Spencer Charles Hilton Barrett

List of Publications by Citations

Source:

https://exaly.com/author-pdf/6110082/spencer-charles-hilton-barrett-publications-by-citations.pdf **Version:** 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

386 128 21,565 75 h-index g-index citations papers 23,956 5.1 414 7.39 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
386	Phylogenetics of Seed Plants: An Analysis of Nucleotide Sequences from the Plastid Gene rbcL. <i>Annals of the Missouri Botanical Garden</i> , 1993 , 80, 528	1.8	1264
385	The evolution of plant sexual diversity. <i>Nature Reviews Genetics</i> , 2002 , 3, 274-84	30.1	809
384	Mating cost of large floral displays in hermaphrodite plants. <i>Nature</i> , 1995 , 373, 512-515	50.4	440
383	Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. <i>PLoS ONE</i> , 2008 , 3, e2802	3.7	421
382	A comparative analysis of pollen limitation in flowering plants. <i>Biological Journal of the Linnean Society</i> , 2000 , 69, 503-520	1.9	417
381	Perspective: purging the genetic load: a review of the experimental evidence. <i>Evolution; International Journal of Organic Evolution</i> , 2002 , 56, 2347-58	3.8	396
380	Effects of a change in the level of inbreeding on the genetic load. <i>Nature</i> , 1991 , 352, 522-4	50.4	394
379	Evolutionary processes in aquatic plant populations. <i>Aquatic Botany</i> , 1993 , 44, 105-145	1.8	308
378	Mating strategies in flowering plants: the outcrossing-selfing paradigm and beyond. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2003 , 358, 991-1004	5.8	307
377	Rapid adaptation to climate facilitates range expansion of an invasive plant. <i>Science</i> , 2013 , 342, 364-6	33.3	302
376	Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. <i>Annals of Botany</i> , 2009 , 103, 1515-27	4.1	272
375	Ecology and evolution of plant mating. Trends in Ecology and Evolution, 1996, 11, 73-9	10.9	244
374	Sexual dimorphism in flowering plants. <i>Journal of Experimental Botany</i> , 2013 , 64, 67-82	7	227
373	Plant reproductive systems and evolution during biological invasion. <i>Molecular Ecology</i> , 2008 , 17, 373-8	3 3 5.7	227
372	A Metapopulation Perspective in Plant Population Biology. <i>Journal of Ecology</i> , 1996 , 84, 461	6	209
371	Sexual interference of the floral kind. <i>Heredity</i> , 2002 , 88, 154-9	3.6	206
370	BAKER'S LAW REVISITED: REPRODUCTIVE ASSURANCE IN A METAPOPULATION. <i>Evolution;</i> International Journal of Organic Evolution, 1998 , 52, 657-668	3.8	206

(1984-2010)

369	The Ecological and Evolutionary Consequences of Clonality for Plant Mating. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 2010 , 41, 193-213	13.5	203
368	Are plant species inherently harder to discriminate than animal species using DNA barcoding markers?. <i>Molecular Ecology Resources</i> , 2009 , 9 Suppl s1, 130-9	8.4	186
367	Pollen Dispersal and Mating Patterns in Animal-Pollinated Plants 1996 , 140-190		183
366	Common garden comparisons of native and introduced plant populations: latitudinal clines can obscure evolutionary inferences. <i>Evolutionary Applications</i> , 2009 , 2, 187-99	4.8	180
365	Variation and Evolution of Mating Systems in Seed Plants 1990 , 229-254		171
364	Selection for Outcrossing, Sexual Selection, and the Evolution of Dioecy in Plants. <i>American Naturalist</i> , 1981 , 118, 443-449	3.7	165
363	Genomic Consequences of Outcrossing and Selfing in Plants. <i>International Journal of Plant Sciences</i> , 2008 , 169, 105-118	2.6	154
362	Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. <i>Molecular Ecology</i> , 2010 , 19, 1774-86	5.7	140
361	Phylogenetic analysis of the ecological correlates of dioecy in angiosperms. <i>Journal of Evolutionary Biology</i> , 2003 , 16, 1006-18	2.3	136
360	The evolution of mating strategies in flowering plants. <i>Trends in Plant Science</i> , 1998 , 3, 335-341	13.1	134
359	Re-establishment of clinal variation in flowering time among introduced populations of purple loosestrife (Lythrum salicaria, Lythraceae). <i>Journal of Evolutionary Biology</i> , 2008 , 21, 234-245	2.3	132
358	Understanding plant reproductive diversity. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2010 , 365, 99-109	5.8	131
357	Influences of clonality on plant sexual reproduction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 8859-66	11.5	128
356	THE DISSOLUTION OF A COMPLEX GENETIC POLYMORPHISM: THE EVOLUTION OF SELF-FERTILIZATION IN TRISTYLOUS EICHHORNIA PANICULATA (PONTEDERIACEAE). <i>Evolution; International Journal of Organic Evolution</i> , 1989 , 43, 1398-1416	3.8	128
355	Evolutionary constraints on adaptive evolution during range expansion in an invasive plant. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2010 , 277, 1799-806	4.4	127
354	THE BIOLOGY OF CANADIAN WEEDS.: 77. Echinochloa crus-galli (L.) Beauv <i>Canadian Journal of Plant Science</i> , 1986 , 66, 739-759	1	126
353	Discriminating plant species in a local temperate flora using the rbcL+matK DNA barcode. <i>Methods in Ecology and Evolution</i> , 2011 , 2, 333-340	7.7	125
352	The effect of pollination intensity and incompatible pollen on seed set in Turnera ulmifolia (Turneraceae). <i>Canadian Journal of Botany</i> , 1984 , 62, 1298-1303		123

351	VARIATION AND EVOLUTION OF BREEDING SYSTEMS IN THE TURNERA ULMIFOLIA L. COMPLEX (TURNERACEAE). <i>Evolution; International Journal of Organic Evolution</i> , 1987 , 41, 340-354	3.8	122
350	New Insights on Heterostyly: Comparative Biology, Ecology and Genetics 2008 , 3-32		120
349	Variation in Outcrossing Rates in Eichhornia paniculata: The Role of Demographic and Reproductive Factors*. <i>Plant Species Biology</i> , 1990 , 5, 41-55	1.3	119
348	Baker's Law Revisited: Reproductive Assurance in a Metapopulation. <i>Evolution; International Journal of Organic Evolution</i> , 1998 , 52, 657	3.8	113
347	RECONSTRUCTION OF THE EVOLUTION OF REPRODUCTIVE CHARACTERS IN PONTEDERIACEAE USING PHYLOGENETIC EVIDENCE FROM CHLOROPLAST DNA RESTRICTION-SITE VARIATION. <i>Evolution; International Journal of Organic Evolution</i> , 1996 , 50, 1454-1469	3.8	113
346	The evolution of plant reproductive systems: how often are transitions irreversible?. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2013 , 280, 20130913	4.4	112
345	The mating consequences of sexual segregation within inflorescences of flowering plants. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2000 , 267, 315-20	4.4	108
344	Rooting phylogenetic trees with distant outgroups: a case study from the commelinoid monocots. <i>Molecular Biology and Evolution</i> , 2002 , 19, 1769-81	8.3	107
343	Gender variation and the evolution of dioecy in Wurmbea dioica (Liliaceae). <i>Journal of Evolutionary Biology</i> , 1992 , 5, 423-444	2.3	104
342	The evolution and adaptive significance of heterostyly. <i>Trends in Ecology and Evolution</i> , 1990 , 5, 144-8	10.9	101
341	Genetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 7713-8	11.5	97
340	The reproductive biology of boreal forest herbs. I. Breeding systems and pollination. <i>Canadian Journal of Botany</i> , 1987 , 65, 2036-2046		97
339	Ecological genetics of sex ratios in plant populations. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2010 , 365, 2549-57	5.8	96
338	A Phylogenetic Analysis of the Evolution of Wind Pollination in the Angiosperms. <i>International Journal of Plant Sciences</i> , 2008 , 169, 49-58	2.6	96
337	The evolution and maintenance of monoecy and dioecy in Sagittaria latifolia (Alismataceae). <i>Evolution; International Journal of Organic Evolution</i> , 2002 , 56, 31-41	3.8	95
336	Differential ovule development following self- and cross-pollination: the basis of self-sterility in Narcissus triandrus (Amaryllidaceae). <i>American Journal of Botany</i> , 1999 , 86, 855-870	2.7	94
335	Pollen Removal From Tristylous Pontederia Cordata: Effects of Anther Position and Pollinator Specialization. <i>Ecology</i> , 1993 , 74, 1059-1072	4.6	94
334	Comparative analyses of sex-ratio variation in dioecious flowering plants. <i>Evolution; International Journal of Organic Evolution</i> , 2013 , 67, 661-72	3.8	93

(2018-1994)

333	INBREEDING DEPRESSION IN PARTIALLY SELF-FERTILIZING DECODON VERTICILLATUS (LYTHRACEAE): POPULATION-GENETIC AND EXPERIMENTAL ANALYSES. <i>Evolution; International Journal of Organic Evolution</i> , 1994 , 48, 952-964	3.8	93
332	Heterostylous Genetic Polymorphisms: Model Systems for Evolutionary Analysis. <i>Monographs on Theoretical and Applied Genetics</i> , 1992 , 1-29		93
331	Evolution of floral display in Eichhornia paniculata (Pontederiaceae): direct and correlated responses to selection on flower size and number. <i>Evolution; International Journal of Organic Evolution</i> , 2000 , 54, 1533-45	3.8	92
330	Phylogenetic congruence and discordance among one morphological and three molecular data sets from Pontederiaceae. <i>Systematic Biology</i> , 1998 , 47, 545-67	8.4	91
329	Division of labour within flowers: heteranthery, a floral strategy to reconcile contrasting pollen fates. <i>Journal of Evolutionary Biology</i> , 2009 , 22, 828-39	2.3	89
328	The population genomics of plant adaptation. <i>New Phytologist</i> , 2010 , 188, 313-32	9.8	88
327	Phenotypic plasticity of vegetative and reproductive traits in monoecious and dioecious populations of Sagittaria latifolia (Alismataceae): a clonal aquatic plant. <i>Journal of Ecology</i> , 2004 , 92, 32-44	6	88
326	Colonization history and population genetic structure of Eichhornia paniculata in Jamaica. <i>Heredity</i> , 1991 , 66, 287-296	3.6	87
325	Spatial patterns of plant diversity below-ground as revealed by DNA barcoding. <i>Molecular Ecology</i> , 2011 , 20, 1289-302	5.7	85
324	Environmental influence on primary sex ratio in a dioecious plant. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 10847-52	11.5	82
323	Effects of Flower Number and Position on Self-Fertilization in Experimental Populations of Eichhornia paniculata (Pontederiaceae). <i>Functional Ecology</i> , 1994 , 8, 526	5.6	82
322	Isozyme Variation in Colonizing Plants 1989 , 106-126		80
321	TEMPORAL VARIATION OF GENDER IN ARALIA HISPIDA VENT. (ARALIACEAE). <i>Evolution;</i> International Journal of Organic Evolution, 1981 , 35, 1094-1107	3.8	80
320	Consequences of hierarchical allocation for the evolution of life-history traits. <i>American Naturalist</i> , 2003 , 161, 153-67	3.7	79
319	Patterns of pollen removal and deposition in tristylous Pontederia cordata L. (Pontederiaceae). <i>Biological Journal of the Linnean Society</i> , 1989 , 36, 317-329	1.9	79
318	Floral trimorphism and monomorphism in continental and island populations of Eichhornia paniculata (Spreng.) Solms. (Pontederiaceae). <i>Biological Journal of the Linnean Society</i> , 1985 , 25, 41-60	1.9	79
317	Reviewers in 2016. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2017 , 284, 20170676	4.4	78
316	Reviewers in 2017. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2018 , 285, 20180325	4.4	78

315	Darwin's legacy: the forms, function and sexual diversity of flowers. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2010 , 365, 351-68	5.8	78
314	EXPERIMENTAL STUDIES ON THE FUNCTIONAL SIGNIFICANCE OF HETEROSTYLY. <i>Evolution;</i> International Journal of Organic Evolution, 1992 , 46, 43-55	3.8	78
313	Understanding the spectacular failure of DNA barcoding in willows (Salix): does this result from a trans-specific selective sweep?. <i>Molecular Ecology</i> , 2014 , 23, 4737-56	5.7	75
312	Quantitative genetics of floral characters in homostylous Turnera ulmifolia var. angustifolia Willd. (Turneraceae). <i>Heredity</i> , 1990 , 64, 105-112	3.6	75
311	Trait correlates and functional significance of heteranthery in flowering plants. <i>New Phytologist</i> , 2010 , 188, 418-25	9.8	74
310	Foundations of invasion genetics: the Baker and Stebbins legacy. <i>Molecular Ecology</i> , 2015 , 24, 1927-41	5.7	73
309	The Dissolution of a Complex Genetic Polymorphism: The Evolution of Self-Fertilization in Tristylous Eichhornia paniculata (Pontederiaceae). <i>Evolution; International Journal of Organic Evolution</i> , 1989 , 43, 1398	3.8	73
308	The Ecology of Mating and Its Evolutionary Consequences in Seed Plants. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 2017 , 48, 135-157	13.5	72
307	Variation of pollen limitation in the early flowering Mediterranean geophyte Narcissus assoanus (Amaryllidaceae). <i>Oecologia</i> , 2000 , 124, 529-535	2.9	72
306	Genetic variation in continental and island populations of Eichhornia paniculata (Pontederiaceae). <i>Heredity</i> , 1987 , 59, 7-17	3.6	72
305	De novo sequence assembly and characterization of the floral transcriptome in cross- and self-fertilizing plants. <i>BMC Genomics</i> , 2011 , 12, 298	4.5	71
304	Environmental stress and the evolution of dioecy: Wurmbea dioica (Colchicaceae) in Western Australia. <i>Evolutionary Ecology</i> , 2004 , 18, 145-164	1.8	70
303	Solving the puzzle of mirror-image flowers. <i>Nature</i> , 2002 , 417, 707	50.4	70
302	Germination and seedling growth under anaerobic conditions in Echinochloa crus-galli (barnyard grass)*. <i>Plant, Cell and Environment</i> , 1980 , 3, 243-248	8.4	70
301	Variation and Evolution of Breeding Systems in the Turnera ulmifolia L. Complex (Turneraceae). <i>Evolution; International Journal of Organic Evolution</i> , 1987 , 41, 340	3.8	69
300	Clonal reproduction and patterns of genotypic diversity in Decodon verticillatus (Lythraceae) 1993 , 80, 1175		69
299	High outcrossing in the annual colonizing species Ambrosia artemisiifolia (Asteraceae). <i>Annals of Botany</i> , 2008 , 101, 1303-9	4.1	68
298	Sex determination and the evolution of dioecy from monoecy in Sagittaria latifolia (Alismataceae). <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2004 , 271, 213-9	4.4	68

297	Mating-system variation, demographic history and patterns of nucleotide diversity in the Tristylous plant Eichhornia paniculata. <i>Genetics</i> , 2010 , 184, 381-92	4	66
296	The genetics of floral development differentiating two species of Mimulus (Scrophulariaceae). <i>Heredity</i> , 1995 , 74, 258-266	3.6	66
295	Style Morph Ratios in Tristylous Decodon Verticillatus (Lythraceae): Selection vs. Historical Contingency. <i>Ecology</i> , 1995 , 76, 1051-1066	4.6	66
294	Sexual Reproduction in Eichhornia crassipes (Water Hyacinth). II. Seed Production in Natural Populations. <i>Journal of Applied Ecology</i> , 1980 , 17, 113	5.8	66
293	Phylogenetic reconstruction of the evolution of stylar polymorphisms in Narcissus (Amaryllidaceae). <i>American Journal of Botany</i> , 2004 , 91, 1007-21	2.7	65
292	The genetics of distyly and homostyly in Turners ulmifolia L. (Turneraceae). <i>Heredity</i> , 1985 , 55, 167-174	3.6	65
291	The ecology of pollen limitation in buzz-pollinated Rhexia virginica (Melastomataceae). <i>Journal of Ecology</i> , 1999 , 87, 371-381	6	64
2 90	Post-pollination mechanisms and the maintenance of outcrossing in self-compatible, tristylous, Decodon verticillatus (Lythraceae). <i>Heredity</i> , 1994 , 72, 396-411	3.6	64
289	The Energy Cost of Bee Pollination for Pontederia cordata (Pontederiaceae). <i>Functional Ecology</i> , 1992 , 6, 226	5.6	64
288	Style morph distribution in new world populations of Eichhornia crassipes (Mart.) Solms-Laubach (water hyacinth). <i>Aquatic Botany</i> , 1982 , 13, 299-306	1.8	64
287	The weed flora of Californian rice fields. <i>Aquatic Botany</i> , 1980 , 9, 351-376	1.8	63
286	GENDER VARIATION IN SAGITTARIA LATIFOLIA (ALISMATACEAE): IS SIZE ALL THAT MATTERS?. <i>Ecology</i> , 2001 , 82, 360-373	4.6	62
285	Tristyly, self-compatibility and floral variation in Decodon verticillatus (Lythraceae). <i>Biological Journal of the Linnean Society</i> , 1994 , 53, 1-30	1.9	62
284	The demography and population genomics of evolutionary transitions to self-fertilization in plants. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369,	5.8	61
283	EFFECTIVE POPULATION SIZE AND GENETIC DRIFT IN TRISTYLOUS EICHHORNIA PANICULATA (PONTEDERIACEAE). <i>Evolution; International Journal of Organic Evolution</i> , 1992 , 46, 1875-1890	3.8	61
282	Colonizing ability in the Echinochloa crus-galli complex (barnyard grass). I. Variation in life history. <i>Canadian Journal of Botany</i> , 1981 , 59, 1844-1860		60
281	Inbreeding Depression in Partially Self-Fertilizing Decodon verticillatus (Lythraceae): Population-Genetic and Experimental Analyses. <i>Evolution; International Journal of Organic Evolution</i> , 1994 , 48, 952	3.8	59
280	STOCHASTIC LOSS OF STYLE MORPHS FROM POPULATIONS OF TRISTYLOUS LYTHRUM SALICARIA AND DECODON VERTICILLATUS (LYTHRACEAE). <i>Evolution; International Journal of Organic Evolution</i> , 1992 , 46, 1014-1029	3.8	59

279	Germination and seedling growth under anaerobic conditions in Echinochloa crus-galli (barnyard grass)*. <i>Plant, Cell and Environment</i> , 1980 , 3, 243-248	8.4	59
278	Post-glacial history of Trillium grandiflorum (Melanthiaceae) in eastern North America: inferences from phylogeography. <i>American Journal of Botany</i> , 2004 , 91, 465-73	2.7	58
277	Evolutionary Interactions Between Plant Reproduction and Defense Against Herbivores. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 2015 , 46, 191-213	13.5	57
276	The evolution of selfing is accompanied by reduced efficacy of selection and purging of deleterious mutations. <i>Genetics</i> , 2015 , 199, 817-29	4	57
275	Genetic drift and the maintenance of the style length polymorphism in tristylous populations of Eichhornia paniculata (Pontederiaceae). <i>Heredity</i> , 1992 , 69, 440-449	3.6	57
274	Evolution of Breeding Systems in Eichhornia (Pontederiaceae): A Review. <i>Annals of the Missouri Botanical Garden</i> , 1988 , 75, 741	1.8	57
273	VARIATION IN THE MATING SYSTEM OF EICHHORNIA PANICULATA (SPRENG.) SOLMS. (PONTEDERIACEAE). <i>Evolution; International Journal of Organic Evolution</i> , 1986 , 40, 1122-1131	3.8	57
272	Natural selection on floral traits through male and female function in wild populations of the heterostylous daffodil Narcissus triandrus. <i>Evolution; International Journal of Organic Evolution</i> , 2008 , 62, 1751-63	3.8	56
271	The Comparative Biology of Mirror-Image Flowers. <i>International Journal of Plant Sciences</i> , 2003 , 164, S237-S249	2.6	55
270	Evolutionary maintenance of stigma-height dimorphism in Narcissus papyraceus (Amaryllidaceae). <i>American Journal of Botany</i> , 2002 , 89, 1242-9	2.7	55
269	Reproductive correlates of mating system variation in Eichhornia paniculata (Spreng.) Solms (Pontederiaceae). <i>Journal of Evolutionary Biology</i> , 1989 , 2, 183-203	2.3	55
268	Spatial pattern, floral sex ratios, and fecundity in dioecious Aralia nudicaulis (Araliaceae). <i>Canadian Journal of Botany</i> , 1982 , 60, 1662-1670		55
267	Incompatibility in heterostylous plants. Advances in Cellular and Molecular Biology of Plants, 1994, 189-	219	54
266	Correlated evolution of floral morphology and mating-type frequencies in a sexually polymorphic plant. <i>Evolution; International Journal of Organic Evolution</i> , 2004 , 58, 964-75	3.8	53
265	Waterweed Invasions. <i>Scientific American</i> , 1989 , 261, 90-97	0.5	53
264	ON THE DARWINIAN HYPOTHESIS OF THE ADAPTIVE SIGNIFICANCE OF TRISTYLY. <i>Evolution;</i> International Journal of Organic Evolution, 1985 , 39, 766-774	3.8	53
263	Stylar Polymorphisms and the Evolution of Heterostyly in Narcissus (Amaryllidaceae) 1996 , 339-376		53
262	Postpollination Mechanisms Influencing Mating Patterns and Fecundity: An Example from Eichhornia paniculata. <i>American Naturalist</i> , 1996 , 147, 576-598	3.7	52

(2000-1993)

261	Clonal reproduction and patterns of genotypic diversity in Decodon verticillatus (Lythraceae). <i>American Journal of Botany</i> , 1993 , 80, 1175-1182	2.7	52	
260	Mating System Estimation in Forest Trees: Models, Methods and Meanings. <i>Lecture Notes in Biomathematics</i> , 1985 , 32-49		52	
259	An experimental evaluation of self-interference in Narcissus assoanus: functional and evolutionary implications. <i>Journal of Evolutionary Biology</i> , 2004 , 17, 1367-76	2.3	51	
258	Size-dependent gender modification in a hermaphroditic perennial herb. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1999 , 266, 225-232	4.4	51	
257	Outcrossing rates and correlated mating within a population of Eichhornia paniculata (Pontederiaceae). <i>Heredity</i> , 1990 , 64, 271-280	3.6	51	
256	Gender modification and resource allocation in subdioecious Wurmbea dioica (Colchicaceae). <i>Journal of Ecology</i> , 1999 , 87, 123-137	6	50	
255	Inheritance of mating-system modifier genes in Eichhornia paniculata (Pontederiaceae). <i>Heredity</i> , 1994 , 72, 433-445	3.6	50	
254	Evolutionary pathways to self-fertilization in a tristylous plant species. New Phytologist, 2009, 183, 546-	-5558	49	
253	Major Evolutionary Transitions in Flowering Plant Reproduction: An Overview. <i>International Journal of Plant Sciences</i> , 2008 , 169, 1-5	2.6	49	
252	Tristyly in Pontederia cordata (Pontederiaceae). Canadian Journal of Botany, 1982, 60, 897-905		49	
251	Heterostyly in a tropical weed: the reproductive biology of the Turnera ulmifolia complex (Turneraceae). <i>Canadian Journal of Botany</i> , 1978 , 56, 1713-1725		49	
250	GENETIC DRIFT AND FOUNDER EFFECT IN NATIVE VERSUS INTRODUCED POPULATIONS OF AN INVADING PLANT, LYTHRUM SALICARIA (LYTHRACEAE). <i>Evolution; International Journal of Organic Evolution</i> , 1996 , 50, 1512-1519	3.8	48	
249	Modification of flower architecture during early stages in the evolution of self-fertilization. <i>Annals of Botany</i> , 2009 , 103, 951-62	4.1	47	
248	Frequency-dependent variation in reproductive success in Narcissus: implications for the maintenance of stigma-height dimorphism. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2003 , 270, 949-53	4.4	47	
247	Pollinator foraging behavior and pollen collection on the floral morphs of tristylous Pontederia cordata L. <i>Oecologia</i> , 1987 , 74, 347-351	2.9	47	
246	Spatial and temporal variation in population size of Eichhornia paniculata in ephemeral habitats: implications for metapopulation dynamics. <i>Journal of Ecology</i> , 1998 , 86, 1021-1031	6	46	
245	Reproductive consequences of interactions between clonal growth and sexual reproduction in Nymphoides peltata: a distylous aquatic plant. <i>New Phytologist</i> , 2005 , 165, 329-35	9.8	46	
244	Evolution and maintenance of stigma-height dimorphism in Narcissus. I. Floral variation and style-morph ratios. <i>Heredity</i> , 2000 , 84 (Pt 5), 502-13	3.6	46	

243	Effective Population Size and Genetic Drift in Tristylous Eichhornia paniculata (Pontederiaceae). <i>Evolution; International Journal of Organic Evolution</i> , 1992 , 46, 1875	3.8	46
242	THE EVOLUTIONARY BREAKDOWN OF TRISTYLY IN EICHHORNIA CRASSIPES (MART.) SOLMS (WATER HYACINTH). <i>Evolution; International Journal of Organic Evolution</i> , 1979 , 33, 499-510	3.8	46
241	Tristyly in Eichhornia crassipes (Mart.) Solms (Water Hyacinth). <i>Biotropica</i> , 1977 , 9, 230	2.3	46
240	Reconstruction of the Evolution of Reproductive Characters in Pontederiaceae Using Phylogenetic Evidence from Chloroplast DNA Restriction-Site Variation. <i>Evolution; International Journal of Organic Evolution</i> , 1996 , 50, 1454	3.8	45
239	Pollinator responses to variation in floral display and flower size in dioecious Sagittaria latifolia (Alismataceae). <i>New Phytologist</i> , 2008 , 179, 1193-1201	9.8	45
238	Frequency-dependent selection on morph ratios in tristylous Lythrum salicaria (Lythraceae). <i>Heredity</i> , 1996 , 77, 581-588	3.6	45
237	TRIMORPHIC INCOMPATIBILITY IN MEXICAN POPULATIONS OF PONTEDERIA SAGITTATA PRESL. (PONTEDERIACEAE). <i>New Phytologist</i> , 1983 , 95, 439-455	9.8	45
236	Genetic Drift and Founder Effect in Native Versus Introduced Populations of an Invading Plant, Lythrum salicaria (Lythraceae). <i>Evolution; International Journal of Organic Evolution</i> , 1996 , 50, 1512	3.8	44
235	The evolution of polymorphic sexual systems in daffodils (Narcissus). New Phytologist, 2005, 165, 45-53	9.8	44
234	Botany: specialized bird perch aids cross-pollination. <i>Nature</i> , 2005 , 435, 41-2	50.4	44
		<i>3</i> 0. 4	''
233	Stochastic Loss of Style Morphs from Populations of Tristylous Lythrum salicaria and Decodon verticillatus (Lythraceae). <i>Evolution; International Journal of Organic Evolution</i> , 1992 , 46, 1014	3.8	44
² 33	Stochastic Loss of Style Morphs from Populations of Tristylous Lythrum salicaria and Decodon		
	Stochastic Loss of Style Morphs from Populations of Tristylous Lythrum salicaria and Decodon verticillatus (Lythraceae). <i>Evolution; International Journal of Organic Evolution</i> , 1992 , 46, 1014	3.8	44
232	Stochastic Loss of Style Morphs from Populations of Tristylous Lythrum salicaria and Decodon verticillatus (Lythraceae). <i>Evolution; International Journal of Organic Evolution</i> , 1992 , 46, 1014 Disassortative mating in tristylous Eichhornia paniculata (Pontederiaceae). <i>Heredity</i> , 1987 , 58, 49-55	3.8	44
232	Stochastic Loss of Style Morphs from Populations of Tristylous Lythrum salicaria and Decodon verticillatus (Lythraceae). <i>Evolution; International Journal of Organic Evolution</i> , 1992 , 46, 1014 Disassortative mating in tristylous Eichhornia paniculata (Pontederiaceae). <i>Heredity</i> , 1987 , 58, 49-55 Mimicry in Plants. <i>Scientific American</i> , 1987 , 257, 76-83	3.8	44 44
232 231 230	Stochastic Loss of Style Morphs from Populations of Tristylous Lythrum salicaria and Decodon verticillatus (Lythraceae). <i>Evolution; International Journal of Organic Evolution</i> , 1992 , 46, 1014 Disassortative mating in tristylous Eichhornia paniculata (Pontederiaceae). <i>Heredity</i> , 1987 , 58, 49-55 Mimicry in Plants. <i>Scientific American</i> , 1987 , 257, 76-83 The Development of Heterostyly. <i>Monographs on Theoretical and Applied Genetics</i> , 1992 , 85-127 Floral Display in Narcissus: Variation in Flower Size and Number at the Species, Population, and	3.8 3.6 0.5	44 44 44
232231230229	Stochastic Loss of Style Morphs from Populations of Tristylous Lythrum salicaria and Decodon verticillatus (Lythraceae). <i>Evolution; International Journal of Organic Evolution</i> , 1992 , 46, 1014 Disassortative mating in tristylous Eichhornia paniculata (Pontederiaceae). <i>Heredity</i> , 1987 , 58, 49-55 Mimicry in Plants. <i>Scientific American</i> , 1987 , 257, 76-83 The Development of Heterostyly. <i>Monographs on Theoretical and Applied Genetics</i> , 1992 , 85-127 Floral Display in Narcissus: Variation in Flower Size and Number at the Species, Population, and Individual Levels. <i>International Journal of Plant Sciences</i> , 2000 , 161, 69-79 CONTRIBUTION OF CRYPTIC INCOMPATIBILITY TO THE MATING SYSTEM OF EICHHORNIA	3.8 3.6 0.5	44 44 44 43

225	THE BREEDING SYSTEM OF PONTEDERIA ROTUNDIFOLIA L., A TRISTYLOUS SPECIES. <i>New Phytologist</i> , 1977 , 78, 209-220	9.8	43
224	Pollinator visitation in populations of tristylous Eichhornia paniculata in northeastern Brazil. <i>Oecologia</i> , 1992 , 89, 365-371	2.9	42
223	Ecological and evolutionary consequences of sexual and clonal reproduction in aquatic plants. <i>Aquatic Botany</i> , 2016 , 135, 46-61	1.8	42
222	Life-history differentiation and the maintenance of monoecy and dioecy in Sagittaria latifolia (Alismataceae). <i>Evolution; International Journal of Organic Evolution</i> , 2003 , 57, 1973-88	3.8	41
221	Evolution and maintenance of stigma-height dimorphism in Narcissus. II. Fitness comparisons between style morphs. <i>Heredity</i> , 2000 , 84 (Pt 5), 514-24	3.6	41
220	Mechanisms governing sex-ratio variation in dioecious Rumex nivalis. <i>Evolution; International Journal of Organic Evolution</i> , 2005 , 59, 814-25	3.8	41
219	Purifying and Positive Selection Influence Patterns of Gene Loss and Gene Expression in the Evolution of a Plant Sex Chromosome System. <i>Molecular Biology and Evolution</i> , 2017 , 34, 1140-1154	8.3	40
218	Variation of Self-Incompatibility within Invasive Populations of Purple Loosestrife (Lythrum salicarial.) from Eastern North America. <i>International Journal of Plant Sciences</i> , 2010 , 171, 158-166	2.6	39
217	Ecological context and metapopulation dynamics affect sex-ratio variation among dioecious plant populations. <i>Annals of Botany</i> , 2013 , 111, 917-23	4.1	38
216	The consequences of monoecy and protogyny for mating in wind-pollinated Carex. <i>New Phytologist</i> , 2009 , 181, 489-497	9.8	38
215	Sexual polymorphisms in Narcissus triandrus (Amaryllidaceae): is this species tristylous?. <i>Heredity</i> , 1997 , 78, 135-145	3.6	38
214	Herkogamy and mating patterns in the self-compatible daffodil Narcissus longispathus. <i>Annals of Botany</i> , 2005 , 95, 1105-11	4.1	38
213	Factors Affecting Low Seed:Ovule Ratios in a Spring Woodland Herb, Trillium grandiflorum (Melanthiaceae). <i>International Journal of Plant Sciences</i> , 2002 , 163, 581-590	2.6	38
212	Heterostyly in the Lamiaceae: The case ofSalvia brandegeei. <i>Plant Systematics and Evolution</i> , 2000 , 223, 211-219	1.3	38
211	The pollination ecology of buzz-pollinated Rhexia virginica (Melastomataceae). <i>American Journal of Botany</i> , 1999 , 86, 502-511	2.7	38
2 10	Reconciling gene and genome duplication events: using multiple nuclear gene families to infer the phylogeny of the aquatic plant family Pontederiaceae. <i>Molecular Biology and Evolution</i> , 2011 , 28, 3009-1	18.3	37
209	Geographic variation in floral morphology and style-morph ratios in a sexually polymorphic daffodil. <i>American Journal of Botany</i> , 2008 , 95, 185-95	2.7	37
208	Experimental Studies on the Functional Significance of Heterostyly. <i>Evolution; International Journal of Organic Evolution</i> , 1992 , 46, 43	3.8	37

207	Multiple origins of self-fertilization in tristylous Eichhornia paniculata (Pontederiaceae): Inferences from style morph and isozyme variation. <i>Journal of Evolutionary Biology</i> , 1993 , 6, 591-608	2.3	37
206	Temporal Variation of Gender in Aralia hispida Vent. (Araliaceae). <i>Evolution; International Journal of Organic Evolution</i> , 1981 , 35, 1094	3.8	37
205	FLORAL SEX RATIOS AND LIFE HISTORY IN ARALIA NUDICAULIS (ARALIACEAE). <i>Evolution;</i> International Journal of Organic Evolution, 1981 , 35, 752-762	3.8	37
204	Floral biology of Eichhornia azurea (Swartz) Kunth (Pontederiaceae). <i>Aquatic Botany</i> , 1978 , 5, 217-228	1.8	37
203	Population divergence along lines of genetic variance and covariance in the invasive plant Lythrum salicaria in eastern North America. <i>Evolution; International Journal of Organic Evolution</i> , 2011 , 65, 2514-	2 9ે .8	36
202	A Phylogenetic Study of Evolutionary Transitions in Sexual Systems in Australasian Wurmbea (Colchicaceae). <i>International Journal of Plant Sciences</i> , 2008 , 169, 141-156	2.6	36
201	Experimental tests of the function of mirror-image flowers. <i>Biological Journal of the Linnean Society</i> , 2005 , 85, 167-179	1.9	36
200	Predicting mating patterns from pollination syndromes: the case of "sapromyiophily" in Tacca chantrieri (Taccaceae). <i>American Journal of Botany</i> , 2005 , 92, 517-24	2.7	36
199	Genetics of mine invasions by Deschampsia cespitosa (Poaceae). <i>Canadian Journal of Botany</i> , 1993 , 71, 1336-1348		36
198	Genetics of weed invasions 1992 , 91-119		36
198 197	Genetics of weed invasions 1992, 91-119 Cryptic dioecy in Mussaenda pubescens (Rubiaceae): a species with stigma-height dimorphism. Annals of Botany, 2010, 106, 521-31	4.1	36 35
	Cryptic dioecy in Mussaenda pubescens (Rubiaceae): a species with stigma-height dimorphism.	4.1	
197	Cryptic dioecy in Mussaenda pubescens (Rubiaceae): a species with stigma-height dimorphism. Annals of Botany, 2010, 106, 521-31 Asymmetrical mating patterns and the evolution of biased style-morph ratios in a tristylous	•	35
19 7	Cryptic dioecy in Mussaenda pubescens (Rubiaceae): a species with stigma-height dimorphism. Annals of Botany, 2010, 106, 521-31 Asymmetrical mating patterns and the evolution of biased style-morph ratios in a tristylous daffodil. Genetical Research, 2008, 90, 3-15 POLLINATION INTENSITY INFLUENCES SEX RATIOS IN DIOECIOUS RUMEX NIVALIS, A	1.1	35 35
197 196 195	Cryptic dioecy in Mussaenda pubescens (Rubiaceae): a species with stigma-height dimorphism. Annals of Botany, 2010, 106, 521-31 Asymmetrical mating patterns and the evolution of biased style-morph ratios in a tristylous daffodil. Genetical Research, 2008, 90, 3-15 POLLINATION INTENSITY INFLUENCES SEX RATIOS IN DIOECIOUS RUMEX NIVALIS, A WIND-POLLINATED PLANT. Evolution; International Journal of Organic Evolution, 2006, 60, 1207-1214 Chloroplast haplotype variation among monoecious and dioecious populations of Sagittaria	3.8	35 35 35
197 196 195	Cryptic dioecy in Mussaenda pubescens (Rubiaceae): a species with stigma-height dimorphism. <i>Annals of Botany</i> , 2010 , 106, 521-31 Asymmetrical mating patterns and the evolution of biased style-morph ratios in a tristylous daffodil. <i>Genetical Research</i> , 2008 , 90, 3-15 POLLINATION INTENSITY INFLUENCES SEX RATIOS IN DIOECIOUS RUMEX NIVALIS, A WIND-POLLINATED PLANT. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 1207-1214 Chloroplast haplotype variation among monoecious and dioecious populations of Sagittaria latifolia (Alismataceae) in eastern North America. <i>Molecular Ecology</i> , 2004 , 13, 2699-707 Evolution of floral display in Eichhornia paniculata (Pontederiaceae): genetic correlations between	3.8 5·7	35 35 35 35
197 196 195 194	Cryptic dioecy in Mussaenda pubescens (Rubiaceae): a species with stigma-height dimorphism. <i>Annals of Botany</i> , 2010 , 106, 521-31 Asymmetrical mating patterns and the evolution of biased style-morph ratios in a tristylous daffodil. <i>Genetical Research</i> , 2008 , 90, 3-15 POLLINATION INTENSITY INFLUENCES SEX RATIOS IN DIOECIOUS RUMEX NIVALIS, A WIND-POLLINATED PLANT. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 1207-1214 Chloroplast haplotype variation among monoecious and dioecious populations of Sagittaria latifolia (Alismataceae) in eastern North America. <i>Molecular Ecology</i> , 2004 , 13, 2699-707 Evolution of floral display in Eichhornia paniculata (Pontederiaceae): genetic correlations between flower size and number. <i>Journal of Evolutionary Biology</i> , 2001 , 14, 469-481 POLLEN DISCOUNTING AND THE SPREAD OF A SELFING VARIANT IN TRISTYLOUS EICHHORNIA PANICULATA: EVIDENCE FROM EXPERIMENTAL POPULATIONS. <i>Evolution; International Journal of</i>	1.1 3.8 5.7 2.3	35 35 35 35 35

(1983-2001)

189	Stigmatic Self-Incompatibility and Mating Patterns in Trillium grandiflorum and Trillium erectum(Melanthiaceae). <i>Annals of Botany</i> , 2001 , 88, 829-841	4.1	33	
188	The Evolutionary Breakdown of Tristyly in Eichhornia crassipes (Mart.) Solms (Water Hyacinth). <i>Evolution; International Journal of Organic Evolution</i> , 1979 , 33, 499	3.8	33	
187	Mating patterns and genetic diversity in the wild daffodil Narcissus longispathus (Amaryllidaceae). <i>Heredity</i> , 2004 , 92, 459-65	3.6	32	
186	Gender plasticity in Sagittaria sagittifolia (Alismataceae), a monoecious aquatic species. <i>Plant Systematics and Evolution</i> , 2003 , 237, 99-106	1.3	32	
185	The reproductive biology of boreal forest herbs. II. Phenology of flowering and fruiting. <i>Canadian Journal of Botany</i> , 1987 , 65, 2047-2056		32	
184	'A most complex marriage arrangement': recent advances on heterostyly and unresolved questions. <i>New Phytologist</i> , 2019 , 224, 1051-1067	9.8	31	
183	Invasion genetics of the Bermuda buttercup (Oxalis pes-caprae): complex intercontinental patterns of genetic diversity, polyploidy and heterostyly characterize both native and introduced populations. <i>Molecular Ecology</i> , 2015 , 24, 2143-55	5.7	31	
182	Contribution of Cryptic Incompatibility to the Mating System of Eichhornia paniculata (Pontederiaceae). <i>Evolution; International Journal of Organic Evolution</i> , 1993 , 47, 925	3.8	30	
181	The evolution of ovule number and flower size in wind-pollinated plants. <i>American Naturalist</i> , 2011 , 177, 246-57	3.7	29	
180	Sexing pollen reveals female bias in a dioecious plant. <i>New Phytologist</i> , 2007 , 175, 185-194	9.8	29	
179	Effects of population size and metapopulation dynamics on a mating-system polymorphism. <i>Theoretical Population Biology</i> , 2001 , 59, 145-55	1.2	29	
178	Inheritance of floral and isozyme polymorphisms in Turnera ulmifolia L <i>Journal of Heredity</i> , 1987 , 78, 44-48	2.4	29	
177	Colonizing ability in the Echinochloa crus-galli complex (barnyard grass). II. Seed biology. <i>Canadian Journal of Botany</i> , 1983 , 61, 556-562		29	
176	On the Darwinian Hypothesis of the Adaptive Significance of Tristyly. <i>Evolution; International Journal of Organic Evolution</i> , 1985 , 39, 766	3.8	29	
175	Genomic consequences of transitions from cross- to self-fertilization on the efficacy of selection in three independently derived selfing plants. <i>BMC Genomics</i> , 2012 , 13, 611	4.5	28	
174	Natural Selection and Genetic Constraints on Flowering Phenology in an Invasive Plant. <i>International Journal of Plant Sciences</i> , 2010 , 171, 960-971	2.6	28	
173	Floral Manipulations Reveal the Cause of Male Fitness Variation in Experimental Populations of Eichhornia paniculata (Pontederiaceae). <i>Functional Ecology</i> , 1992 , 6, 590	5.6	28	
172	Male Fertility and Anisoplethic Population Structure in Tristylous Pontederia cordata (Pontederiaceae). <i>Evolution; International Journal of Organic Evolution</i> , 1983 , 37, 745	3.8	28	

171	Sexual Reproduction in Eichhornia crassipes (Water Hyacinth). I. Fertility of Clones from Diverse Regions. <i>Journal of Applied Ecology</i> , 1980 , 17, 101	5.8	28
170	Integrating trait- and niche-based approaches to assess contemporary evolution in alien plant species. <i>Journal of Ecology</i> , 2013 , 101, 68-77	6	27
169	Population structure and genetic diversity in tristylous Narcissus triandrus: insights from microsatellite and chloroplast DNA variation. <i>Molecular Ecology</i> , 2007 , 16, 2317-32	5.7	27
168	Spatial ecology of mating success in a sexually polymorphic plant. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2006 , 273, 387-94	4.4	27
167	Floral variation in Eichhornia paniculata (Spreng.) Solms (Pontederiaceae) II. Effects of development and environment on the formation of selfing flowers. <i>Journal of Evolutionary Biology</i> , 1992 , 5, 83-107	2.3	27
166	Pollen tube growth in tristylous Pontederia cordata (Pontederiaceae). <i>Canadian Journal of Botany</i> , 1986 , 64, 2602-2607		27
165	Reversal of height dimorphism promotes pollen and seed dispersal in a wind-pollinated dioecious plant. <i>Biology Letters</i> , 2012 , 8, 245-8	3.6	26
164	Ecology and Genetics of Ephemeral Plant Populations: Eichhornia paniculata (Pontederiaceae) in Northeast Brazil. <i>Journal of Heredity</i> , 1997 , 88, 277-284	2.4	26
163	The development of enantiostyly. American Journal of Botany, 2003, 90, 183-95	2.7	26
162	Ecological correlates and genetic consequences of evolutionary transitions from distyly to homostyly. <i>Annals of Botany</i> , 2017 , 120, 775-789	4.1	25
161	Temporal changes in the pollinator fauna of tristylous Pontederia cordata, an aquatic plant. <i>Canadian Journal of Zoology</i> , 1988 , 66, 1421-1424	1.5	25
160	Phylogeographic insights on the evolutionary breakdown of heterostyly. <i>New Phytologist</i> , 2017 , 214, 1368-1380	9.8	24
159	Seasonal variation in the mating system of a selfing annual with large floral displays. <i>Annals of Botany</i> , 2016 , 117, 391-400	4.1	24
158	Evolution. The long-term benefits of self-rejection. <i>Science</i> , 2010 , 330, 459-60	33.3	24
157	Dimorphic incompatibility and gender in Nymphoides indica (Menyanthaceae). <i>Canadian Journal of Botany</i> , 1980 , 58, 1938-1942		24
156	Hill-Robertson Interference Reduces Genetic Diversity on a Young Plant Y-Chromosome. <i>Genetics</i> , 2017 , 207, 685-695	4	23
155	The influence of demography and local mating environment on sex ratios in a wind-pollinated dioecious plant. <i>Ecology and Evolution</i> , 2013 , 3, 629-39	2.8	23
154	Floral Biology of Gender Monomorphism and Dimorphism in Wurmbea dioica (Colchicaceae) in Western Australia. <i>International Journal of Plant Sciences</i> , 2004 , 165, 289-301	2.6	23

153	ECOLOGICAL DIFFERENTIATION OF COMBINED AND SEPARATE SEXES OF WURMBEA DIOICA (COLCHICACEAE) IN SYMPATRY. <i>Ecology</i> , 2001 , 82, 2601-2616	4.6	23
152	The genetics of mirror-image flowers. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2002 , 269, 1835-9	4.4	23
151	Estimates of gene flow in Eichhornia paniculata (Pontederiaceae): effects of range substructure. <i>Heredity</i> , 1995 , 75, 549-560	3.6	23
150	Morphological Differentiation and Crossability among Populations of the Turnera ulminfolia L. Complex (Turneraceae). <i>Systematic Botany</i> , 1985 , 10, 308	0.7	23
149	POLLEN-PISTIL INTERACTIONS IN TRISTYLOUS PONTEDERIA SAGITTATA (PONTEDERIACEAE). II. PATTERNS OF POLLEN TUBE GROWTH. <i>American Journal of Botany</i> , 1991 , 78, 1662-1682	2.7	22
148	THE DEVELOPMENTAL BASIS OF TRISTYLY IN EICHHORNIA PANICULATA (PONTEDERIACEAE). American Journal of Botany, 1984 , 71, 1347-1363	2.7	22
147	The Influence of Pollination Intensity on Fertilization Success, Progeny Sex Ratio, and Fitness in a Wind-Pollinated, Dioecious Plant. <i>International Journal of Plant Sciences</i> , 2012 , 173, 184-191	2.6	21
146	Variation and evolution of herkogamy in Exochaenium (Gentianaceae): implications for the evolution of distyly. <i>Annals of Botany</i> , 2013 , 112, 95-102	4.1	21
145	Sex in advertising: dioecy alters the net benefits of attractiveness in Sagittaria latifolia (Alismataceae). <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2006 , 273, 2401-7	4.4	21
144	PERSPECTIVE: PURGING THE GENETIC LOAD: A REVIEW OF THE EXPERIMENTAL EVIDENCE. <i>Evolution; International Journal of Organic Evolution</i> , 2002 , 56, 2347	3.8	21
143	Pollen Discounting and the Spread of a Selfing Variant in Tristylous Eichhornia paniculata: Evidence from Experimental Populations. <i>Evolution; International Journal of Organic Evolution</i> , 1994 , 48, 1576	3.8	21
142	Genetic modifications of dimorphic incompatibility in the Turnera ulmifolia L. complex (Turneraceae). <i>Genome</i> , 1986 , 28, 796-807		21
141	HISTORICAL FACTORS AND ANISOPLETHIC POPULATION STRUCTURE IN TRISTYLOUS PONTEDERIA CORDATA: A REASSESSMENT. <i>Evolution; International Journal of Organic Evolution</i> , 1988 , 42, 496-504	3.8	21
140	The function and adaptive significance of tristyly in Pontederia cordata L. (Pontederiaceae). <i>Biological Journal of the Linnean Society</i> , 1984 , 21, 315-329	1.9	21
139	The dynamics of resource allocation and costs of reproduction in a sexually dimorphic, wind-pollinated dioecious plant. <i>Plant Biology</i> , 2016 , 18, 98-103	3.7	20
138	The natural history of pollination and mating in bird-pollinated Babiana (Iridaceae). <i>Annals of Botany</i> , 2012 , 109, 667-79	4.1	20
137	Floral variation in Eichhornia paniculata (Spreng.) Solms (Pontederiaceae): I. Instability of stamen position in genotypes from northeast Brazil. <i>Journal of Evolutionary Biology</i> , 1990 , 3, 103-123	2.3	20
136	MALE FERTILITY AND ANISOPLETHIC POPULATION STRUCTURE IN TRISTYLOUS PONTEDERIA CORDATA (PONTEDERIACEAE). Evolution; International Journal of Organic Evolution, 1983, 37, 745-759	3.8	20

135	The effects of haploid selection on Y chromosome evolution in two closely related dioecious plants. <i>Evolution Letters</i> , 2018 , 2, 368-377	5.3	20
134	Rain pollination provides reproductive assurance in a deceptive orchid. <i>Annals of Botany</i> , 2012 , 110, 95	3-28.1	19
133	Evolutionarily stable sex ratios and mutation load. <i>Evolution; International Journal of Organic Evolution</i> , 2013 , 67, 1915-25	3.8	19
132	Floral dimorphism in plant populations with combined versus separate sexes. <i>Annals of Botany</i> , 2011 , 108, 765-76	4.1	19
131	Mating patterns and demography in the tristylous daffodil Narcissus triandrus. Heredity, 2006 , 96, 262-	·79 .6	19
130	A theoretical investigation of the evolution and maintenance of mirror-image flowers. <i>American Naturalist</i> , 2003 , 161, 916-30	3.7	19
129	Gender Variation in Sagittaria latifolia (Alismataceae): Is Size All That Matters?. <i>Ecology</i> , 2001 , 82, 360	4.6	19
128	Discovery of distyly in Narcissus (Amaryllidaceae). American Journal of Botany, 2000, 87, 748-751	2.7	19
127	The inheritance of tristyly in Decodon verticillatus (Lythraceae). <i>Heredity</i> , 1993 , 71, 473-480	3.6	19
126	Variation in Floral Sexuality of Diclinous Aralia (Araliaceae). <i>Annals of the Missouri Botanical Garden</i> , 1984 , 71, 278	1.8	19
125	Female reproductive success and the evolution of mating-type frequencies in tristylous populations. <i>New Phytologist</i> , 2006 , 171, 569-80	9.8	18
124	Taxonomy and Natural History of Bacopa (Scrophulariaceae) in California. <i>Systematic Botany</i> , 1978 , 3, 408	0.7	18
123	Variation and evolution of sex ratios at the northern range limit of a sexually polymorphic plant. <i>Journal of Evolutionary Biology</i> , 2014 , 27, 1454-66	2.3	17
122	Floral variation and environmental heterogeneity in a tristylous clonal aquatic of the Pantanal wetlands of Brazil. <i>Annals of Botany</i> , 2014 , 114, 1637-49	4.1	16
121	Genetic variation in Trillium erectum (Melanthiaceae), a widespread forest herb in eastern North America. <i>Canadian Journal of Botany</i> , 2004 , 82, 316-321		16
120	Variation in the Mating System of Eichhornia paniculata (Spreng.) Solms. (Pontederiaceae). <i>Evolution; International Journal of Organic Evolution</i> , 1986 , 40, 1122	3.8	16
119	Phylogenomic analysis reveals multiple evolutionary origins of selfing from outcrossing in a lineage of heterostylous plants. <i>New Phytologist</i> , 2019 , 224, 1290-1303	9.8	15
118	Loss of floral polymorphism in heterostylous Luculia pinceana (Rubiaceae): a molecular phylogeographic perspective. <i>Molecular Ecology</i> , 2012 , 21, 4631-45	5.7	15

117	Genetic and environmental control of temporal and size-dependent sex allocation in a wind-pollinated plant. <i>Evolution; International Journal of Organic Evolution</i> , 2011 , 65, 2061-74	3.8	15	
116	Responses of carbon acquisition traits to irradiance and light quality in Mercurialis annua (Euphorbiaceae): evidence for weak integration of plastic responses. <i>American Journal of Botany</i> , 2002 , 89, 1388-400	2.7	15	
115	Sex-specific plasticity of reproductive allocation in response to water depth in a clonal, dioecious macrophyte. <i>American Journal of Botany</i> , 2019 , 106, 42-50	2.7	15	
114	Pollination, mating and reproductive fitness in a plant population with bimodal floral-tube length. Journal of Evolutionary Biology, 2016 , 29, 1631-42	2.3	14	
113	Postpollination discrimination between self and outcross pollen covaries with the mating system of a self-compatible flowering plant. <i>American Journal of Botany</i> , 2016 , 103, 568-76	2.7	14	
112	Experimental insights on the function of ancillary pollen and stigma polymorphisms in plants with heteromorphic incompatibility. <i>Evolution; International Journal of Organic Evolution</i> , 2017 , 71, 121-134	3.8	14	
111	Size-dependent gender modification in Lilium apertum (Liliaceae): does this species exhibit gender diphasy?. <i>Annals of Botany</i> , 2014 , 114, 441-53	4.1	14	
110	The ecology and evolution of gender strategies in plants: the example of Australian Wurmbea (Colchicaceae). <i>Australian Journal of Botany</i> , 2006 , 54, 417	1.2	14	
109	Mating-system evolution in flowering plants: micro- and macroevolutionary approaches*. <i>Acta Botanica Neerlandica</i> , 1995 , 44, 385-402		14	
108	Historical Factors and Anisoplethic Population Structure in Tristylous Pontederia cordata: A Reassessment. <i>Evolution; International Journal of Organic Evolution</i> , 1988 , 42, 496	3.8	14	
107	THE DEVELOPMENTAL BASIS OF TRISTYLY IN EICHHORNIA PANICULATA (PONTEDERIACEAE) 1984 , 71, 1347		14	
106	Experimental insights on Darwin's cross-promotion hypothesis in tristylous purple loosestrife (). <i>American Journal of Botany</i> , 2017 , 104, 616-626	2.7	13	
105	Ecological Differentiation of Combined and Separate Sexes of Wurmbea dioica (Colchicaceae) in Sympatry. <i>Ecology</i> , 2001 , 82, 2601	4.6	13	
104	Fertility differences among floral morphs following selfing in tristylous Eichhornia paniculata (Pontederiaceae): inbreeding depression or partial incompatibility?. <i>American Journal of Botany</i> , 1996 , 83, 594-603	2.7	13	
103	Widespread Recombination Suppression Facilitates Plant Sex Chromosome Evolution. <i>Molecular Biology and Evolution</i> , 2021 , 38, 1018-1030	8.3	13	
102	Clonal genetic structure and diversity in populations of an aquatic plant with combined vs. separate sexes. <i>Molecular Ecology</i> , 2014 , 23, 2914-28	5.7	12	
101	Experimental Evidence of Insect Pollination in Juncaceae, a Primarily Wind-Pollinated Family. <i>International Journal of Plant Sciences</i> , 2013 , 174, 1219-1228	2.6	12	
100	DEVELOPMENT OF TRISTYLY IN PONTEDERIA CORDATA (PONTEDERIACEAE). I. MATURE FLORAL STRUCTURE AND PATTERNS OF RELATIVE GROWTH OF REPRODUCTIVE ORGANS. <i>American Journal of Botany</i> , 1987 , 74, 1831-1841	2.7	12	

99	Pollen Heteromorphism as a Tool in Studies of the Pollination Process in Pontederia cordata L. 1986 , 435-442		12
98	Pollination intensity influences sex ratios in dioecious Rumex nivalis, a wind-pollinated plant. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 1207-14	3.8	12
97	Associations between sex-organ deployment and morph bias in related heterostylous taxa with different stylar polymorphisms. <i>American Journal of Botany</i> , 2017 , 104, 50-61	2.7	11
96	EPIGENETICS OF COLONIZING SPECIES? A STUDY OF JAPANESE KNOTWEED IN CENTRAL EUROPE 2016 , 328-340		11
95	Experimental analysis of mating patterns in a clonal plant reveals contrasting modes of self-pollination. <i>Ecology and Evolution</i> , 2015 , 5, 5423-5431	2.8	11
94	The effect of mammalian herbivory on inflorescence architecture in ornithophilous Babiana (Iridaceae): implications for the evolution of a bird perch. <i>American Journal of Botany</i> , 2012 , 99, 1096-10	o 3 .7	11
93	Why Reproductive Systems Matter for the Invasion Biology of Plants 2010 , 195-210		11
92	Variation in Outcrossing Rates in Eichhornia paniculata: Temporal Changes in Populations of Contrasting Style Morph Structure. <i>Plant Species Biology</i> , 1993 , 8, 141-148	1.3	11
91	DEVELOPMENT OF TRISTYLY IN PONTEDERIA CORDATA (PONTEDERIACEAE). I. MATURE FLORAL STRUCTURE AND PATTERNS OF RELATIVE GROWTH OF REPRODUCTIVE ORGANS 1987 , 74, 1831		11
90	POLLEN-PISTIL INTERACTIONS IN TRISTYLOUS PONTEDERIA SAGITTATA (PONTEDERIACEAE). II. PATTERNS OF POLLEN TUBE GROWTH 1991 , 78, 1662		11
89	Trimorphic incompatibility in Eichhornia azurea (Pontederiaceae). <i>Sexual Plant Reproduction</i> , 2000 , 12, 203-208		10
88	Divergent selection on the biomechanical properties of stamens under wind and insect pollination. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2018 , 285, 20182251	4.4	10
87	Genomic Loss and Silencing on the Y Chromosomes of Rumex. <i>Genome Biology and Evolution</i> , 2017 , 9, 3345-3355	3.9	9
86	Isolation and characterization of 11 microsatellite markers from Sagittaria latifolia (Alismataceae). <i>Molecular Ecology Resources</i> , 2009 , 9, 579-81	8.4	9
85	Reproductive biology of island and mainland populations of Primula mistassinica (Primulaceae) on Lake Huron shorelines. <i>Canadian Journal of Botany</i> , 1998 , 76, 1819-1827		9
84	Stamen elongation, pollen size, and siring ability in tristylous elchhornia paniculata (Pontederiaceae). <i>American Journal of Botany</i> , 1995 , 82, 1381-1389	2.7	9
83	POLLEN-PISTIL INTERACTIONS IN TRISTYLOUS PONTEDERIA SAGITTATA (PONTEDERIACEAE). I. FLORAL HETEROMORPHISM AND STRUCTURAL FEATURES OF THE POLLEN TUBE PATHWAY. <i>American Journal of Botany</i> , 1991 , 78, 1643-1661	2.7	9
82	Dimorphic Incompatibility in Turnera Hermannioides Camb. (Turneraceae). <i>Annals of the Missouri Botanical Garden</i> , 1985 , 72, 259	1.8	9

81	STIGMATIC POLLEN LOADS IN POPULATIONS OF PONTEDERIA CORDATA FROM THE SOUTHERN U.S. 1986 , 73, 1607		9	
8o	Stochastic Processes during Invasion: The Influence of Population Size on Style-Morph Frequency Variation in Lythrum salicaria (Purple Loosestrife). <i>International Journal of Plant Sciences</i> , 2016 , 177, 4	109 ⁻² 4 ¹ 8	8	
79	Chromosomal distribution of cytonuclear genes in a dioecious plant with sex chromosomes. <i>Genome Biology and Evolution</i> , 2014 , 6, 2439-43	3.9	8	
78	Trimorphic Incompatibility inPontederia subovata(Pontederiaceae): An Aquatic Macrophyte from Lowland South America. <i>International Journal of Plant Sciences</i> , 2013 , 174, 47-56	2.6	8	
77	EVOLUTION OF FLORAL DISPLAY IN EICHHORNIA PANICULATA (PONTEDERIACEAE): DIRECT AND CORRELATED RESPONSES TO SELECTION ON FLOWER SIZE AND NUMBER. <i>Evolution; International Journal of Organic Evolution</i> , 2000 , 54, 1533	3.8	8	
76	STIGMATIC POLLEN LOADS IN POPULATIONS OF PONTEDERIA CORDATA FROM THE SOUTHERN U.S American Journal of Botany, 1986 , 73, 1607-1612	2.7	8	
75	POLLEN-PISTIL INTERACTIONS IN TRISTYLOUS PONTEDERIA SAGITTATA (PONTEDERIACEAE). I. FLORAL HETEROMORPHISM AND STRUCTURAL FEATURES OF THE POLLEN TUBE PATHWAY 1991 , 78, 1643		8	
74	Comparative analysis of pollen release biomechanics in Thalictrum: implications for evolutionary transitions between animal and wind pollination. <i>New Phytologist</i> , 2019 , 224, 1121-1132	9.8	7	
73	Evolutionary Genomics of Plant Gametophytic Selection. <i>Plant Communications</i> , 2020 , 1, 100115	9	7	
72	The role of hybridization in the evolution of sexual system diversity in a clonal, aquatic plant. <i>Evolution; International Journal of Organic Evolution</i> , 2016 , 70, 1200-11	3.8	7	
71	Variation in style morph frequencies in tristylous Lythrum salicaria in the Iberian Peninsula: the role of geographical and demographic factors. <i>Annals of Botany</i> , 2016 , 117, 331-40	4.1	7	
70	Sexual polymorphisms in Narcissus triandrus (Amaryllidaceae): is this species tristylous?		7	
69	Evolutionary history of the buildup and breakdown of the heterostylous syndrome in Plumbaginaceae. <i>New Phytologist</i> , 2019 , 224, 1278-1289	9.8	6	
68	Invasion genetics of Senecio vulgaris: loss of genetic diversity characterizes the invasion of a selfing annual, despite multiple introductions. <i>Biological Invasions</i> , 2017 , 19, 255-267	2.7	6	
67	The genetic architecture of tristyly and its breakdown to self-fertilization. <i>Molecular Ecology</i> , 2017 , 26, 752-765	5.7	5	
66	Genetic and Environmental Influences on Partial Self-Incompatibility inLythrum salicaria(Lythraceae). <i>International Journal of Plant Sciences</i> , 2018 , 179, 423-435	2.6	5	
65	The effects of plant sexual system and latitude on resistance to herbivores. <i>American Journal of Botany</i> , 2018 , 105, 977-985	2.7	5	
64	Genetics of distyly and homostyly in a self-compatible Primula. <i>Heredity</i> , 2019 , 122, 110-119	3.6	5	

63	Variation in sexual dimorphism in a wind-pollinated plant: the influence of geographical context and life-cycle dynamics. <i>New Phytologist</i> , 2019 , 224, 1108-1120	9.8	5
62	Disassortative mating and the maintenance of sexual polymorphism in painted maple. <i>Molecular Ecology</i> , 2012 , 21, 3640-3	5.7	5
61	Variation in floral morph ratios in tristylous Oxalis squamata (Oxalidaceae): an Andean alpine endemic. <i>Botany</i> , 2012 , 90, 1180-1185	1.3	5
60	Diplostigmaty in plants: a novel mechanism that provides reproductive assurance. <i>Biology Letters</i> , 2013 , 9, 20130495	3.6	5
59	MECHANISMS GOVERNING SEX-RATIO VARIATION IN DIOECIOUS RUMEX NIVALIS. <i>Evolution;</i> International Journal of Organic Evolution, 2005 , 59, 814	3.8	5
58	THE BAKER AND STEBBINS ERA COMES TO A CLOSE. <i>Evolution; International Journal of Organic Evolution</i> , 2001 , 55, 2371-2374	3.8	5
57	ESTIMATING EFFECTIVE POPULATION SIZE: A REPLY TO NUNNEY. <i>Evolution; International Journal of Organic Evolution</i> , 1995 , 49, 392-394	3.8	5
56	LIFE-HISTORY DIFFERENTIATION AND THE MAINTENANCE OF MONOECY AND DIOECY IN SAGITTARIA LATIFOLIA (ALISMATACEAE). <i>Evolution; International Journal of Organic Evolution</i> , 2003 , 57, 1973	3.8	4
55	Fertility differences among floral morphs following selfing in tristylous Eichhornia paniculata (Pontederiaceae): inbreeding depression or partial incompatibility? 1996 , 83, 594		4
54	Ancestral and neo-sex chromosomes contribute to population divergence in a dioecious plant. <i>Evolution; International Journal of Organic Evolution</i> , 2020 , 74, 256-269	3.8	4
53	The biomechanics of pollen release: new perspectives on the evolution of wind pollination in angiosperms. <i>Biological Reviews</i> , 2021 , 96, 2146-2163	13.5	4
52	Recent mating-system evolution in Eichhornia is accompanied by cis-regulatory divergence. <i>New Phytologist</i> , 2016 , 211, 697-707	9.8	4
51	The Genomic Selfing Syndrome Accompanies the Evolutionary Breakdown of Heterostyly. <i>Molecular Biology and Evolution</i> , 2021 , 38, 168-180	8.3	4
50	EXOTICS EXHIBIT MORE EVOLUTIONARY HISTORY THAN NATIVES 2016 , 122-138		3
49	The influence of floral morph ratios and low plant density on mating and fertility in a tristylous colonizing species. <i>Botany</i> , 2018 , 96, 533-545	1.3	3
48	David Graham Lloyd. 20 June 1937 B0 May 2007. <i>Biographical Memoirs of Fellows of the Royal Society</i> , 2007 , 53, 203-221	0.1	3
47	The development of eight microsatellite loci in the wild daffodil Narcissus triandrus (Amaryllidaceae). <i>Molecular Ecology Notes</i> , 2006 , 7, 510-512		3
46	THE EVOLUTION AND MAINTENANCE OF MONOECY AND DIOECY IN SAGITTARIA LATIFOLIA (ALISMATACEAE). <i>Evolution; International Journal of Organic Evolution</i> , 2002 , 56, 31	3.8	3

(2016-1995)

45	Estimating Effective Population Size: A Reply to Nunney. <i>Evolution; International Journal of Organic Evolution</i> , 1995 , 49, 392	3.8	3
44	Stamen elongation, pollen size, and siring ability in tristylous elchhornia paniculata (Pontederiaceae) 1995 , 82, 1381		3
43	The spatial ecology of sex ratios in a dioecious plant: Relations between ramet and genet sex ratios. <i>Journal of Ecology</i> , 2019 , 107, 1804-1816	6	3
42	Characterization of 30 microsatellite markers in distylous (Primulaceae) using HiSeq sequencing. <i>Applications in Plant Sciences</i> , 2019 , 7, e01208	2.3	2
41	Architectural constraints, male fertility variation and biased floral morph ratios in tristylous populations. <i>Heredity</i> , 2019 , 123, 694-706	3.6	2
40	Paternity analysis reveals constraints on hybridization potential between native and introduced bluebells (Hyacinthoides). <i>Conservation Genetics</i> , 2019 , 20, 571-584	2.6	2
39	Global patterns of reproductive and cytotype diversity in an invasive clonal plant. <i>Biological Invasions</i> , 2020 , 22, 1691-1703	2.7	2
38	The evolution of plant reproductive ecology in China. <i>Journal of Plant Ecology</i> , 2015 , 8, 101-108	1.7	2
37	CORRELATED EVOLUTION OF FLORAL MORPHOLOGY AND MATING-TYPE FREQUENCIES IN A SEXUALLY POLYMORPHIC PLANT. <i>Evolution; International Journal of Organic Evolution</i> , 2004 , 58, 964	3.8	2
36	Ancestral and neo-sex chromosomes contribute to population divergence in a dioecious plant		2
35	Characterization of 24 microsatellite markers in (Primulaceae), a distylous-homostylous species, using MiSeq sequencing. <i>Plant Diversity</i> , 2016 , 38, 89-91	2.9	2
34	Recombination landscape dimorphism and sex chromosome evolution in the dioecious plant <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2022 , 377, 20210226	5.8	2
33	Water mediates fertilization in a terrestrial flowering plant. New Phytologist, 2019, 224, 1133-1141	9.8	1
32	Influence of local density and sex ratio on pollination in an ambophilous flowering plant. <i>American Journal of Botany</i> , 2020 , 107, 587-598	2.7	1
31	CHROMOSOME INVERSIONS, ADAPTIVE CASSETTES AND THE EVOLUTION OF SPECIESTRANGES 2016 , 175-186		1
30	THE INFLUENCE OF NUMBERS ON INVASION SUCCESS 2016 , 25-39		1
29	WHAT WE STILL DON'T KNOW ABOUT INVASION GENETICS 2016 , 346-370		1
28	EVOLUTION OF THE MATING SYSTEM IN COLONIZING PLANTS 2016 , 57-80		1

27	CONTEMPORARY EVOLUTION DURING INVASION 2016 , 101-121		1
26	Geographic variation of reproductive traits and competition for pollinators in a bird-pollinated plant. <i>Ecology and Evolution</i> , 2019 , 9, 10122-10134	2.8	1
25	POLLINATION INTENSITY INFLUENCES SEX RATIOS IN DIOECIOUS RUMEX NIVALIS, A WIND-POLLINATED PLANT. <i>Evolution; International Journal of Organic Evolution</i> , 2006 , 60, 1207	3.8	1
24	Herbert George Baker (1920\(\mathbb{\text{0}}\)001)\(\mathbb{E}\)enaissance botanist and incurable holist. \(Taxon\), \(\mathbb{2}\)001, 50, 1249-1253	0.8	1
23	Recombination landscape dimorphism contributes to sex chromosome evolution in the dioecious plant Rumex hastatulus		1
22	The effects of haploid selection on Y chromosome evolution in two closely related dioecious plants		1
21	Plant sex: Best to be bisexual when mates are scarce. Current Biology, 2021, 31, R298-R300	6.3	1
20	Heteranthery. Current Biology, 2021 , 31, R774-R776	6.3	1
19	Sexual conflict in protandrous flowers and the evolution of gynodioecy. <i>Evolution; International Journal of Organic Evolution</i> , 2021 , 75, 278-293	3.8	1
18	Sexual dimorphism, temporal niche differentiation, and evidence for the Jack Sprat effect in an annual dioecious plant. <i>Journal of Systematics and Evolution</i> , 2021 ,	2.9	1
17	THE POPULATION BIOLOGY OF FUNGAL INVASIONS 2016 , 81-100		0
16	EVOLUTION OF PHENOTYPIC PLASTICITY IN COLONIZING SPECIES 2016 , 165-174		O
15	CHARACTERISTICS OF SUCCESSFUL ALIEN PLANTS 2016 , 40-56		0
14	Herbivore-Mediated Selection on Floral Display Covaries Nonlinearly With Plant-Antagonistic Interaction Intensity Among Primrose Populations. <i>Frontiers in Plant Science</i> , 2021 , 12, 727957	6.2	O
13	Do annual and perennial populations of an insect-pollinated plant species differ in mating system?. <i>Annals of Botany</i> , 2021 , 127, 853-864	4.1	0
12	FOUNDATIONS OF INVASION GENETICS 2016 , 1-18		
11	THE DISTRIBUTION OF GENETIC VARIANCE ACROSS PHENOTYPIC SPACE AND THE RESPONSE TO SELECTION 2016 , 187-205		
10	INFORMATION ENTROPY AS A MEASURE OF GENETIC DIVERSITY AND EVOLVABILITY IN COLONIZATION 2016 , 206-217		

LIST OF PUBLICATIONS

9	THE DEVIL IS IN THE DETAILS 2016 , 232-251	
8	GENETIC RECONSTRUCTIONS OF INVASION HISTORY 2016 , 267-282	
7	COMPARATIVE GENOMICS IN THE ASTERACEAE REVEALS LITTLE EVIDENCE FOR PARALLEL EVOLUTIONARY CHANGE IN INVASIVE TAXA 2016 , 283-299	
6	THE ROLE OF CLIMATE ADAPTATION IN COLONIZATION SUCCESS IN ARABIDOPSIS THALIANA 2016 , 300-312	
5	A GENETIC PERSPECTIVE ON RAPID EVOLUTION IN CANE TOADS (RHINELLA MARINA) 2016 , 313-327	
4	CAUSES AND CONSEQUENCES OF FAILED ADAPTATION TO BIOLOGICAL INVASIONS 2016 , 139-151	
3	EXPANSION LOAD 2016 , 218-231	
2	THE BAKER AND STEBBINS ERA COMES TO A CLOSE. <i>Evolution; International Journal of Organic Evolution</i> , 2001 , 55, 2371	3.8
1	Characterization of 30 microsatellite markers for distylous Primula denticulata (Primulaceae) using HiSeq sequencing. <i>Genes and Genetic Systems</i> , 2021 , 95, 275-279	1.4