
Francisco Nualart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6109977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential subcellular distribution of glucose transporters GLUT1–6 and GLUT9 in human cancer: Ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues. Journal of Cellular Physiology, 2006, 207, 614-627.	2.0	236
2	Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. Journal of Neurochemistry, 2003, 86, 709-724.	2.1	181
3	Expression of the fructose transporter GLUT5 in human breast cancer Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1847-1852.	3.3	177
4	Glucose increases intracellular free Ca ²⁺ in tanycytes via ATP released through connexin 43 hemichannels. Glia, 2012, 60, 53-68.	2.5	154
5	High-affinity sodium-vitamin C co-transporters (SVCT) expression in embryonic mouse neurons. Journal of Neurochemistry, 2001, 78, 815-823.	2.1	107
6	Up-regulation and Polarized Expression of the Sodium-Ascorbic Acid Transporter SVCT1 in Post-confluent Differentiated CaCo-2 Cells. Journal of Biological Chemistry, 2003, 278, 9035-9041.	1.6	99
7	Sodium vitamin C cotransporter SVCT2 is expressed in hypothalamic glial cells. Clia, 2005, 50, 32-47.	2.5	99
8	Cellular distribution of Glutâ€1 and Glutâ€5 in benign and malignant human prostate tissue. Journal of Cellular Biochemistry, 2012, 113, 553-562.	1.2	91
9	Expression of the hexose transporters GLUT1 and GLUT2 during the early development of the human brain. Brain Research, 1999, 824, 97-104.	1.1	84
10	ldentification and partial characterization of the secretory glycoproteins of the bovine subcommissural organ-Reissner's fiber complex. Evidence for the existence of two precursor forms. Molecular Brain Research, 1991, 11, 227-238.	2.5	82
11	Brain Glucose-Sensing Mechanism and Energy Homeostasis. Molecular Neurobiology, 2019, 56, 769-796.	1.9	74
12	MCT Expression and Lactate Influx/Efflux in Tanycytes Involved in Glia-Neuron Metabolic Interaction. PLoS ONE, 2011, 6, e16411.	1.1	72
13	Broad expression of fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase provide evidence for gluconeogenesis in human tissues other than liver and kidney. Journal of Cellular Physiology, 2003, 197, 189-197.	2.0	71
14	Vitamin C Transporters, Recycling and the Bystander Effect in the Nervous System: SVCT2 versus Gluts. Journal of Stem Cell Research & Therapy, 2014, 04, 209.	0.3	67
15	Increased facilitated transport of dehydroascorbic acid without changes in sodium-dependent ascorbate transport in human melanoma cells. Cancer Research, 1997, 57, 2529-37.	0.4	64
16	Vitamin C uptake and recycling among normal and tumor cells from the central nervous system. Journal of Neuroscience Research, 2005, 79, 146-156.	1.3	63
17	The oxidized form of vitamin C, dehydroascorbic acid, regulates neuronal energy metabolism. Journal of Neurochemistry, 2014, 129, 663-671.	2.1	59
18	The Na ⁺ â€dependent <scp>l</scp> â€ascorbic acid transporter SVCT2 expressed in brainstem cells, neurons, and neuroblastoma cells is inhibited by flavonoids. Journal of Neurochemistry, 2009, 108, 563-577.	2.1	56

#	Article	IF	CITATIONS
19	Altered expression and localization of insulin receptor in proximal tubule cells from human and rat diabetic kidney. Journal of Cellular Biochemistry, 2013, 114, 639-649.	1.2	56
20	MCT2 Expression and Lactate Influx in Anorexigenic and Orexigenic Neurons of the Arcuate Nucleus. PLoS ONE, 2013, 8, e62532.	1.1	53
21	Enhanced astroglial Ca ²⁺ signaling increases excitatory synaptic strength in the epileptic brain. Glia, 2015, 63, 1507-1521.	2.5	52
22	Elevated expression of glucose transporter-1 in hypothalamic ependymal cells not involved in the formation of the brain-cerebrospinal fluid barrier. Journal of Cellular Biochemistry, 2001, 80, 491-503.	1.2	50
23	Glial Glucokinase Expression in Adult and Post-Natal Development of the Hypothalamic Region. ASN Neuro, 2010, 2, AN20090059.	1.5	50
24	Ascorbic acid participates in a general mechanism for concerted glucose transport inhibition and lactate transport stimulation. Pflugers Archiv European Journal of Physiology, 2008, 457, 519-528.	1.3	49
25	Estrogen and Progesterone Up-Regulate Glucose Transporter Expression in ZR-75-1 Human Breast Cancer Cells. Endocrinology, 2003, 144, 4527-4535.	1.4	48
26	Dehydroascorbic Acid Promotes Cell Death in Neurons Under Oxidative Stress: a Protective Role for Astrocytes. Molecular Neurobiology, 2016, 53, 5847-5863.	1.9	44
27	Differential regulation of glucose transporter expression by estrogen and progesterone in Ishikawa endometrial cancer cells. Journal of Endocrinology, 2004, 182, 467-478.	1.2	42
28	Intracellular ascorbic acid inhibits transport of glucose by neurons, but not by astrocytes. Journal of Neurochemistry, 2007, 102, 773-782.	2.1	42
29	Structural and functional identification of vasculogenic mimicry in vitro. Scientific Reports, 2017, 7, 6985.	1.6	42
30	Insulin regulates GLUT1â€mediated glucose transport in MGâ€63 human osteosarcoma cells. Journal of Cellular Physiology, 2011, 226, 1425-1432.	2.0	37
31	Dynamic Localization of Glucokinase and Its Regulatory Protein in Hypothalamic Tanycytes. PLoS ONE, 2014, 9, e94035.	1.1	35
32	Regulation of GLUT3 and glucose uptake by the cAMP signalling pathway in the breast cancer cell line ZR-75. Journal of Cellular Physiology, 2008, 214, 110-116.	2.0	33
33	Glucose Transporter 1 and Monocarboxylate Transporters 1, 2, and 4 Localization within the Glial Cells of Shark Blood-Brain-Barriers. PLoS ONE, 2012, 7, e32409.	1.1	32
34	SVCT2 vitamin C transporter expression in progenitor cells of the postnatal neurogenic niche. Frontiers in Cellular Neuroscience, 2013, 7, 119.	1.8	32
35	Ependymal Cell Differentiation and GLUT1 Expression is a Synchronous Process in the Ventricular Wall. Neurochemical Research, 2005, 30, 1227-1236.	1.6	30
36	Vitamin C controls neuronal necroptosis under oxidative stress. Redox Biology, 2020, 29, 101408.	3.9	28

#	Article	IF	CITATIONS
37	Glucose Transporters in Sex Steroid Hormone Related Cancer. Current Vascular Pharmacology, 2009, 7, 534-548.	0.8	27
38	Differential distribution of the Sodium-vitamin C cotransporter-1 along the proximal tubule of the mouse and human kidney. Kidney International, 2008, 74, 1278-1286.	2.6	25
39	Elevated expression of glucose transporter-1 in hypothalamic ependymal cells not involved in the formation of the brain-cerebrospinal fluid barrier. Journal of Cellular Biochemistry, 2001, 80, 491-503.	1.2	25
40	Alpha1-Antitrypsin Expression in Human Thyroid Papillary Carcinoma. American Journal of Surgical Pathology, 1996, 20, 956-963.	2.1	24
41	Immunochemical analysis of the subcommissural organ-Reissner's fiber complex using antibodies against alkylated and deglycosylated glycoproteins of the bovine Reissner's fiber. Cell and Tissue Research, 1996, 286, 23-31.	1.5	21
42	SVCT2 Is Expressed by Cerebellar Precursor Cells, Which Differentiate into Neurons in Response to Ascorbic Acid. Molecular Neurobiology, 2018, 55, 1136-1149.	1.9	21
43	Human choroid plexus papilloma cells efficiently transport glucose and vitamin C. Journal of Neurochemistry, 2013, 127, 403-414.	2.1	20
44	<scp>SVCT2</scp> transporter expression is postâ€natally induced in cortical neurons and its function is regulated by its short isoform. Journal of Neurochemistry, 2014, 130, 693-706.	2.1	20
45	SVCT2 Expression and Function in Reactive Astrocytes Is a Common Event in Different Brain Pathologies. Molecular Neurobiology, 2018, 55, 5439-5452.	1.9	20
46	Dietary Fructose Promotes Prostate Cancer Growth. Cancer Research, 2021, 81, 2824-2832.	0.4	20
47	Over-expression of muscle glycogen synthase in human diabetic nephropathy. Histochemistry and Cell Biology, 2015, 143, 313-324.	0.8	19
48	Apical Polarization of SVCT2 in Apical Radial Glial Cells and Progenitors During Brain Development. Molecular Neurobiology, 2017, 54, 5449-5467.	1.9	19
49	The ascorbic acid transporter SVCT2 is expressed in slow-twitch skeletal muscle fibres. Histochemistry and Cell Biology, 2009, 131, 565-574.	0.8	18
50	Typical and atypical stem cells in the brain, vitamin C effect and neuropathology. Biological Research, 2012, 45, 243-256.	1.5	18
51	The median eminence as the hypothalamic area involved in rapid transfer of glucose to the brain: functional and cellular mechanisms. Journal of Molecular Medicine, 2019, 97, 1085-1097.	1.7	18
52	Regulation by Insulin and Insulin-Like Growth Factor of 2-Deoxyglucose Uptake in Primary Ependymal Cell Cultures. Neurochemical Research, 2004, 29, 127-134.	1.6	17
53	Unconventional Neurogenic Niches and Neurogenesis Modulation by Vitamins. Journal of Stem Cell Research & Therapy, 2014, 04, 184.	0.3	17
54	Basal Sodium-Dependent Vitamin C Transporter 2 polarization in choroid plexus explant cells in normal or scorbutic conditions. Scientific Reports, 2019, 9, 14422.	1.6	17

#	Article	IF	CITATIONS
55	Hexose Transporters in Cancer: From Multifunctionality to Diagnosis and Therapy. Trends in Endocrinology and Metabolism, 2021, 32, 198-211.	3.1	17
56	Expression and localization of an agmatinase-like protein in the rat brain. Histochemistry and Cell Biology, 2010, 134, 137-144.	0.8	16
57	Dynamic expression of the sodium-vitamin C co-transporters, SVCT1 and SVCT2, during perinatal kidney development. Histochemistry and Cell Biology, 2013, 139, 233-247.	0.8	16
58	ClassicalXenopus laevis progesterone receptor associates to the plasma membrane through its ligand-binding domain. Journal of Cellular Physiology, 2007, 211, 560-567.	2.0	15
59	SVCT2 Overexpression in Neuroblastoma Cells Induces Cellular Branching that is Associated with ERK Signaling. Molecular Neurobiology, 2016, 53, 6668-6679.	1.9	15
60	Two Distinct Faces of Vitamin C: AA vs. DHA. Antioxidants, 2021, 10, 215.	2.2	15
61	Novel expression of liver FBPase in Langerhans islets of human and rat pancreas. Journal of Cellular Physiology, 2005, 205, 19-24.	2.0	13
62	Sodium tungstate: Is it a safe option for a chronic disease setting, such as diabetes?. Journal of Cellular Physiology, 2019, 234, 51-60.	2.0	11
63	Antiâ€Diabetic Agent Sodium Tungstate Induces the Secretion of Pro―and Antiâ€Inflammatory Cytokines by Human Kidney Cells. Journal of Cellular Physiology, 2017, 232, 355-362.	2.0	10
64	Expression of a Novel Ciliary Protein, IIIG9, During the Differentiation and Maturation of Ependymal Cells. Molecular Neurobiology, 2018, 55, 1652-1664.	1.9	10
65	Metabolic control by dehydroascorbic acid: Questions and controversies in cancer cells. Journal of Cellular Physiology, 2019, 234, 19331-19338.	2.0	9
66	Vitamin C Recycling Regulates Neurite Growth in Neurospheres Differentiated In Vitro. Antioxidants, 2020, 9, 1276.	2.2	9
67	SVCT2 Overexpression and Ascorbic Acid Uptake Increase Cortical Neuron Differentiation, Which Is Dependent on Vitamin C Recycling between Neurons and Astrocytes. Antioxidants, 2021, 10, 1413.	2.2	9
68	Vitamin C deficient reduces proliferation in a human periventricular tumor stem cellâ€derived glioblastoma model. Journal of Cellular Physiology, 2021, 236, 5801-5817.	2.0	9
69	Up-regulation of the vitamin C transporter SVCT2 upon differentiation and depolarization of myotubes. FEBS Letters, 2011, 585, 390-396.	1.3	8
70	The Antidiabetic Agent Sodium Tungstate Induces Abnormal Glycogen Accumulation in Renal Proximal Tubules from Diabetic IRS2-Knockout Mice. Journal of Diabetes Research, 2018, 2018, 1-10.	1.0	8
71	Gluconeogenic Enzymes in β-Cells: Pharmacological Targets for Improving Insulin Secretion. Trends in Endocrinology and Metabolism, 2019, 30, 520-531.	3.1	8
72	Dehydroascorbic acid, the oxidized form of vitamin C, improves renal histology and function in old mice. Journal of Cellular Physiology, 2020, 235, 9773-9784.	2.0	8

#	Article	IF	CITATIONS
73	Glioblastoma Invasiveness and Collagen Secretion Are Enhanced by Vitamin C. Antioxidants and Redox Signaling, 2022, 37, 538-559.	2.5	8
74	Cytosolic phosphoenolpyruvate carboxykinase is expressed in αâ€cells from human and murine pancreas. Journal of Cellular Physiology, 2020, 235, 166-175.	2.0	7
75	Pharmacological targets for the induction of ferroptosis: Focus on Neuroblastoma and Glioblastoma. Frontiers in Oncology, 0, 12, .	1.3	7
76	Aging Selectively Modulates Vitamin C Transporter Expression Patterns in the Kidney. Journal of Cellular Physiology, 2017, 232, 2418-2426.	2.0	6
77	IIIG9 inhibition in adult ependymal cells changes adherens junctions structure and induces cellular detachment. Scientific Reports, 2021, 11, 18537.	1.6	6
78	In vivo sodium tungstate treatment prevents Eâ€cadherin loss induced by diabetic serum in HKâ€2 cell line. Journal of Cellular Physiology, 2015, 230, 2437-2446.	2.0	5
79	Cytoarchitecture, Proliferative Activity and Neuroblast Migration in the Subventricular Zone and Lateral Ventricle Extension of the Adult Guinea Pig Brain. Stem Cells, 2016, 34, 2574-2586.	1.4	5