Eike B Bauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6109892/publications.pdf Version: 2024-02-01

FIRE R RALIED

#	Article	IF	CITATIONS
1	Recent Advances in Iron Catalysis in Organic Synthesis. Current Organic Chemistry, 2008, 12, 1341-1369.	1.6	255
2	Chiral-at-metal complexes and their catalytic applications in organic synthesis. Chemical Society Reviews, 2012, 41, 3153.	38.1	231
3	Transition-Metal-Catalyzed Functionalization of Propargylic Alcohols and Their Derivatives. Synthesis, 2012, 44, 1131-1151.	2.3	161
4	New iron(ii) \hat{I}_{\pm} -iminopyridine complexes and their catalytic activity in the oxidation of activated methylene groups and secondary alcohols to ketones. Dalton Transactions, 2011, 40, 7617.	3.3	58
5	Chemoselective, iron(ii)-catalyzed oxidation of a variety of secondary alcohols over primary alcohols utilizing H2O2 as the oxidant. Chemical Communications, 2013, 49, 5889.	4.1	43
6	Iron Catalysis: Historic Overview and Current Trends. Topics in Organometallic Chemistry, 2015, , 1-18.	0.7	38
7	Iron(II) αâ€Aminopyridine Complexes and Their Catalytic Activity in Oxidation Reactions: A Comparative Study of Activity and Ligand Decomposition. ChemPlusChem, 2013, 78, 101-116.	2.8	34
8	Recent Advances in Iron Catalyzed Oxidation Reactions of Organic Compounds. Israel Journal of Chemistry, 2017, 57, 1131-1150.	2.3	29
9	Oxidation of activated methylene groups to ketones catalyzed by new iron phosphinooxazoline complexes and by iron(II) triflate. Journal of Molecular Catalysis A, 2009, 309, 117-123.	4.8	25
10	Polydentate pyridyl ligands and the catalytic activity of their iron(II) complexes in oxidation reactions utilizing peroxides as the oxidants. Journal of Molecular Catalysis A, 2013, 373, 161-171.	4.8	25
11	New indenyl phosphinooxazoline complexes of iron and their catalytic activity in the Mukaiyama aldol reaction. Tetrahedron Letters, 2010, 51, 2855-2858.	1.4	20
12	New five-coordinate Ru(ii) phosphoramidite complexes and their catalytic activity in propargylic amination reactions. New Journal of Chemistry, 2011, 35, 2427.	2.8	19
13	Etherification reactions of propargylic alcohols catalyzed by a cationic ruthenium allenylidene complex. Catalysis Communications, 2014, 47, 45-48.	3.3	18
14	New chiral phosphoramidite allenylidene complexes of ruthenium obtained with chirality transfer. Tetrahedron Letters, 2009, 50, 5485-5488.	1.4	15
15	Synthesis, Structural Characterization, and Catalytic Activity of Indenyl Tris(<i>N</i> â€pyrrolyl)phosphine Complexes of Ruthenium. European Journal of Inorganic Chemistry, 2016, 2016, 1093-1102.	2.0	15
16	Transition metal catalyzed glycosylation reactions – an overview. Organic and Biomolecular Chemistry, 2020, 18, 9160-9180.	2.8	15
17	Synthesis and structural characterization of new chiral mixed phosphine phosphoramidite complexes of ruthenium. Inorganica Chimica Acta, 2009, 362, 1935-1942.	2.4	14
18	New Chiral Phosphoramidite Complexes of Iron as Catalytic Precursors in the Oxidation of Activated Methylene Groups. Molecules, 2010, 15, 2631-2650.	3.8	14

Eike B Bauer

#	Article	IF	CITATIONS
19	Synthesis and Structural Characterization of a Series of New Chiralâ€atâ€Metal Ruthenium Allenylidene Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 1269-1282.	2.0	14
20	Diastereoselective Attack on Chiral-at-Metal Ruthenium Allenylidene Complexes To Give Alkynyl Complexes. Organometallics, 2014, 33, 5052-5065.	2.3	14
21	Synthesis and structural characterization of new phosphinooxazoline complexes of iron. Journal of Organometallic Chemistry, 2008, 693, 3081-3091.	1.8	12
22	Ferrocenium hexafluorophosphate as an inexpensive, mild catalyst for the etherification of propargylic alcohols. Journal of Molecular Catalysis A, 2015, 407, 221-229.	4.8	10
23	The coordination chemistry and reactivity of amino-dithiaphospholanes with rhodium, iridium, and ruthenium. Tetrahedron Letters, 2009, 50, 922-925.	1.4	9
24	Facile one-pot access to a chiral at metal ruthenium pyrrolyl phosphine phosphoramidite complex. Inorganic Chemistry Communication, 2011, 14, 478-480.	3.9	9
25	Cationic ruthenium complex of the formula [RuCl(2,6-diacetylpyridine)(PPh3)2]BArF and its catalytic activity in the formation of enol esters. Tetrahedron Letters, 2018, 59, 873-877.	1.4	9
26	Spectroscopic investigation and direct comparison of the reactivities of iron pyridyl oxidation catalysts. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 174, 130-137.	3.9	7
27	Ruthenium complexes of the general formula [RuCl2(PHOX)2] and their catalytic activity in the Mukaiyama aldol reaction. Tetrahedron Letters, 2014, 55, 3033-3037.	1.4	6
28	Synthesis, structural characterization and catalytic activity of indenyl complexes of ruthenium bearing fluorinated phosphine ligands. Journal of Organometallic Chemistry, 2017, 847, 41-53.	1.8	6
29	Ferrocenium Cations as Catalysts for the Etherification of Cyclopropylâ€5ubstituted Propargylic Alcohols: Eneâ€yne Formation and Mechanistic Insights. European Journal of Organic Chemistry, 2019, 2019, 7348-7358.	2.4	5
30	New amino-dithiaphospholanes and phosphoramidodithioites and their rhodium and iridium complexes. Inorganica Chimica Acta, 2011, 366, 209-218.	2.4	4
31	Ruthenium complexes of the general formula [RuCl2(PHOX)2] as precatalysts in propargylic substitution reactions. Catalysis Communications, 2018, 106, 92-95.	3.3	4
32	Ferrocenium complex aided <i>O</i> -glycosylation of glycosyl halides. RSC Advances, 2021, 11, 36814-36820.	3.6	2