Donna Stokes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6109869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Value of STEM Scholarship Grants to Undergraduate and Graduate Students Intending to Study the STEM Disciplines and Pursue STEM Careers. Advances in Research on Teaching, 2021, , 179-200.	0.2	0
2	Overview of the teachHOUSTON Program *. Advances in Research on Teaching, 2021, , 7-26.	0.2	0
3	In Praise of "Unsung Teachersâ€: Teachers' Influences on Students Enrolling in STEM Programs with the Intent of Entering STEM Careers. Advances in Research on Teaching, 2021, , 135-158.	0.2	0
4	Enhancing Preservice Teacher Preparation through Formal and Informal Learning Experiences. Advances in Research on Teaching, 2021, , 65-83.	0.2	1
5	Parents' Influence on Undergraduate and Graduate Students' Entering the STEM Disciplines and STEM Careers. Advances in Research on Teaching, 2021, , 109-133.	0.2	1
6	The Influence of Professors on Students Enrolled in the STEM Programs with the Intent of Embarking on STEM Careers. Advances in Research on Teaching, 2021, , 159-177.	0.2	0
7	Collaboration between a Physics Professor and a Physics Teacher/Teacher Educator. Advances in Research on Teaching, 2021, , 27-40.	0.2	0
8	A Narrative Inquiry into Teaching Physics as Inquiry: One Teacher's Journey. Advances in Research on Teaching, 2021, , 41-64.	0.2	0
9	Where Are the teachHOUSTON Preservice Candidates Now? Are They Still in the Urban Teacher Force?. Advances in Research on Teaching, 2021, , 201-226.	0.2	1
10	Overview of the Book. Advances in Research on Teaching, 2021, , 1-5.	0.2	0
11	Examining the Impact of Informal Experiences on Preservice Teachers' Self-efficacy. Advances in Research on Teaching, 2021, , 85-108.	0.2	1
12	Learning and Leading as Collaborative Physics Education/Physics Partners: Building a Physics Teacher Education Program. Palgrave Studies on Leadership and Learning in Teacher Education, 2020, , 271-284.	0.2	0
13	Long mean free paths of room-temperature THz acoustic phonons in a high thermal conductivity material. Physical Review B, 2019, 100, .	3.2	20
14	A tribute to â€~unsung teachers': teachers' influences on students enrolling in STEM programs with the intent of entering STEM careers. European Journal of Teacher Education, 2019, 42, 335-358.	3.7	14
15	The embodied nature of narrative knowledge: A cross-study analysis of embodied knowledge in teaching, learning, and life. Teaching and Teacher Education, 2018, 71, 329-340.	3.2	42
16	The influence of parents on undergraduate and graduate students' entering the STEM disciplines and STEM careers. International Journal of Science Education, 2018, 40, 621-643.	1.9	31
17	Propagation of THz acoustic wave packets in GaN at room temperature. Applied Physics Letters, 2018, 112, .	3.3	10
18	Attracting, Preparing, and Retaining Teachers in High Need Areas: A Science as Inquiry Model of		7

Attracting, Preparing, and Retaining Teacher Education. , 2017, , 455-470.

DONNA STOKES

#	Article	IF	CITATIONS
19	Math remediation intervention for student success in the algebra-based introductory physics course. Physical Review Physics Education Research, 2017, 13, .	2.9	8
20	Effect of strain on the growth of InAs/GaSb superlattices: An x-ray diffraction study. Journal of Applied Physics, 2010, 107, .	2.5	13
21	Short-period InAs/GaSb superlattices for mid-infrared photodetectors. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1702-1706.	0.8	8
22	X-ray diffraction analysis of an osmium silicide epilayer grown on Si(100) by molecular beam epitaxy. Journal of Crystal Growth, 2006, 294, 174-178.	1.5	5
23	Growth of short-period InAsâ^•GaSb superlattices. Journal of Applied Physics, 2006, 100, 123110.	2.5	26
24	X-ray diffraction analysis of interdiffusion in Al[sub x]In[sub 1â^'x]As[sub y]Sb[sub 1â^'y]â^•GaSb multilayers. Journal of Vacuum Science & Technology B, 2006, 24, 1127.	1.3	3
25	Effect of interfacial strain on the morphological instability of noncommon anion semiconductor epitaxial films. Applied Physics Letters, 2006, 89, 111906.	3.3	1
26	Molecular beam epitaxial growth of Fe(Si[sub 1â^'x]Ge[sub x])[sub 2] epilayers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1299.	1.6	2
27	Morphological Instability inInAs/GaSbSuperlattices due to Interfacial Bonds. Physical Review Letters, 2005, 95, 096104.	7.8	14
28	X-ray diffraction analysis of lateral composition modulation in InAs/GaSb superlattices intended for infrared detector applications. IEE Proceedings: Optoelectronics, 2003, 150, 420.	0.8	0
29	Lateral composition modulation in InAs/GaSb superlattices. Journal of Applied Physics, 2003, 93, 311-315.	2.5	13
30	Mid-infrared W quantum-well lasers for noncryogenic continuous-wave operation. Applied Optics, 2001, 40, 806.	2.1	6
31	Mid–infrared â€~W' lasers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2001, 359, 489-503.	3.4	18
32	Type-II antimonide quantum wells for mid-infrared lasers. Optical Materials, 2001, 17, 179-183.	3.6	3
33	Electrical and magnetotransport in AlxIn1-xAsySb1-y/GaSb multilayers. Semiconductor Science and Technology, 2001, 16, 353-357.	2.0	0
34	Type-II mid-infrared lasers. , 2000, , .		1
35	Continuous-wave operation of λ=3.25 μ4m broadened-waveguide W quantum-well diode lasers up to T=195 K. Applied Physics Letters, 2000, 76, 256-258.	3.3	109
36	Optical-pumping injection cavity (OPIC) mid-IR "W" lasers with high efficiency and low loss. IEEE Photonics Technology Letters, 2000, 12, 477-479.	2.5	35

DONNA STOKES

#	Article	IF	CITATIONS
37	High-efficiency midinfrared "W―laser with optical pumping injection cavity. Applied Physics Letters, 1999, 75, 2876-2878.	3.3	36
38	High-temperature continuous-wave 3–6.1 μm "W―lasers with diamond-pressure-bond heat sinking. Applied Physics Letters, 1999, 74, 1075-1077.	3.3	100
39	Type-II quantum-well "W―lasers emitting at λ=5.4–7.3 μm. Journal of Applied Physics, 1999, 86, 472	9- 4.7 33.	27
40	Thermal characterization of diamond-pressure-bond heat sinking for optically pumped mid-infrared lasers. IEEE Journal of Quantum Electronics, 1999, 35, 1597-1601.	1.9	23
41	Continuous-wave type-II "QW" lasers emitting at /spl lambda/=5.4-7.1 μm. IEEE Photonics Technology Letters, 1999, 11, 964-966.	2.5	20
42	High-Temperature Diode and Optically-Pumped Mid-IR Lasers with Type-II "W―Quantum Wells. Optics and Photonics News, 1999, 10, 18.	0.5	0
43	Optically pumped mid-infrared type-II lasers: advances in high-temperature performance. , 1999, , .		0
44	High-Temperature W Diode Lasers Emitting at 3.3µm. Materials Research Society Symposia Proceedings, 1999, 607, 95.	0.1	0
45	High-temperature continuous-wave operation of optically-pumped W lasers with \hat{I} » = 3-7.1 ŵm. , 1999, , .		0