
Beatriz Perdiguero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/610983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innate Immune Sensing of Modified Vaccinia Virus Ankara (MVA) Is Mediated by TLR2-TLR6, MDA-5 and the NALP3 Inflammasome. PLoS Pathogens, 2009, 5, e1000480.	2.1	285
2	Emerging SARS-CoV-2 Variants and Impact in Global Vaccination Programs against SARS-CoV-2/COVID-19. Vaccines, 2021, 9, 243.	2.1	217
3	The Evolution of Poxvirus Vaccines. Viruses, 2015, 7, 1726-1803.	1.5	164
4	The Interferon System and Vaccinia Virus Evasion Mechanisms. Journal of Interferon and Cytokine Research, 2009, 29, 581-598.	0.5	141
5	Immunization with HIV Gag targeted to dendritic cells followed by recombinant New York vaccinia virus induces robust T-cell immunity in nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7131-7136.	3.3	121
6	MVA and NYVAC as Vaccines against Emergent Infectious Diseases and Cancer. Current Gene Therapy, 2011, 11, 189-217.	0.9	100
7	Movements of vaccinia virus intracellular enveloped virions with GFP tagged to the F13L envelope protein. Journal of General Virology, 2001, 82, 2747-2760.	1.3	96
8	Poxvirus vectors as HIV/AIDS vaccines in humans. Human Vaccines and Immunotherapeutics, 2012, 8, 1192-1207.	1.4	73
9	Safety and immunogenicity of a modified pox vector-based HIV/AIDS vaccine candidate expressing Env, Gag, Pol and Nef proteins of HIV-1 subtype B (MVA-B) in healthy HIV-1-uninfected volunteers: A phase I clinical trial (RISVAC02). Vaccine, 2011, 29, 8309-8316.	1.7	70
10	Cryo X-ray nano-tomography of vaccinia virus infected cells. Journal of Structural Biology, 2012, 177, 202-211.	1.3	70
11	Clinical applications of attenuated MVA poxvirus strain. Expert Review of Vaccines, 2013, 12, 1395-1416.	2.0	66
12	The HIV/AIDS Vaccine Candidate MVA-B Administered as a Single Immunogen in Humans Triggers Robust, Polyfunctional, and Selective Effector Memory T Cell Responses to HIV-1 Antigens. Journal of Virology, 2011, 85, 11468-11478.	1.5	63
13	Improved NYVAC-Based Vaccine Vectors. PLoS ONE, 2011, 6, e25674.	1.1	59
14	Safety and immunogenicity of a modified vaccinia Ankara-based HIV-1 vaccine (MVA-B) in HIV-1-infected patients alone or in combination with a drug to reactivate latent HIV-1. Journal of Antimicrobial Chemotherapy, 2015, 70, 1833-1842.	1.3	56
15	Improving the MVA Vaccine Potential by Deleting the Viral Gene Coding for the IL-18 Binding Protein. PLoS ONE, 2012, 7, e32220.	1.1	54
16	Improved Innate and Adaptive Immunostimulation by Genetically Modified HIV-1 Protein Expressing NYVAC Vectors. PLoS ONE, 2011, 6, e16819.	1.1	42
17	Comparison of Immunogenicity in Rhesus Macaques of Transmitted-Founder, HIV-1 Group M Consensus, and Trivalent Mosaic Envelope Vaccines Formulated as a DNA Prime, NYVAC, and Envelope Protein Boost. Journal of Virology, 2015, 89, 6462-6480.	1.5	40
18	High, Broad, Polyfunctional, and Durable T Cell Immune Responses Induced in Mice by a Novel Hepatitis C Virus (HCV) Vaccine Candidate (MVA-HCV) Based on Modified Vaccinia Virus Ankara Expressing the Nearly Full-Length HCV Genome, Journal of Virology, 2013, 87, 7282-7300.	1.5	39

BEATRIZ PERDIGUERO

#	Article	IF	CITATIONS
19	Removal of Vaccinia Virus Genes That Block Interferon Type I and II Pathways Improves Adaptive and Memory Responses of the HIV/AIDS Vaccine Candidate NYVAC-C in Mice. Journal of Virology, 2012, 86, 5026-5038.	1.5	38
20	Interaction between Vaccinia Virus Extracellular Virus Envelope A33 and B5 Glycoproteins. Journal of Virology, 2006, 80, 8763-8777.	1.5	36
21	Head-to-Head Comparison of Poxvirus NYVAC and ALVAC Vectors Expressing Identical HIV-1 Clade C Immunogens in Prime-Boost Combination with Env Protein in Nonhuman Primates. Journal of Virology, 2015, 89, 8525-8539.	1.5	35
22	Systems Analysis of MVA-C Induced Immune Response Reveals Its Significance as a Vaccine Candidate against HIV/AIDS of Clade C. PLoS ONE, 2012, 7, e35485.	1.1	30
23	Virological and Immunological Characterization of Novel NYVAC-Based HIV/AIDS Vaccine Candidates Expressing Clade C Trimeric Soluble gp140(ZM96) and Gag(ZM96)-Pol-Nef(CN54) as Virus-Like Particles. Journal of Virology, 2015, 89, 970-988.	1.5	30
24	Deletion of the Viral Anti-Apoptotic Gene F1L in the HIV/AIDS Vaccine Candidate MVA-C Enhances Immune Responses against HIV-1 Antigens. PLoS ONE, 2012, 7, e48524.	1.1	30
25	NFκB activation by modified vaccinia virus as a novel strategy to enhance neutrophil migration and HIV-specific T-cell responses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1333-E1342.	3.3	26
26	HIV/AIDS Vaccine Candidates Based on Replication-Competent Recombinant Poxvirus NYVAC-C-KC Expressing Trimeric gp140 and Gag-Derived Virus-Like Particles or Lacking the Viral Molecule B19 That Inhibits Type I Interferon Activate Relevant HIV-1-Specific B and T Cell Immune Functions in Nonhuman Primates. Journal of Virology, 2017, 91, .	1.5	26
27	Deletion of the Vaccinia Virus Gene A46R, Encoding for an Inhibitor of TLR Signalling, Is an Effective Approach to Enhance the Immunogenicity in Mice of the HIV/AIDS Vaccine Candidate NYVAC-C. PLoS ONE, 2013, 8, e74831.	1.1	25
28	Priming with a Potent HIV-1 DNA Vaccine Frames the Quality of Immune Responses prior to a Poxvirus and Protein Boost. Journal of Virology, 2019, 93, .	1.5	25
29	A Phase I Randomized Therapeutic MVA-B Vaccination Improves the Magnitude and Quality of the T Cell Immune Responses in HIV-1-Infected Subjects on HAART. PLoS ONE, 2015, 10, e0141456.	1.1	24
30	Involvement of the Cellular Phosphatase DUSP1 in Vaccinia Virus Infection. PLoS Pathogens, 2013, 9, e1003719.	2.1	23
31	Vaccinia Virus A34 Glycoprotein Determines the Protein Composition of the Extracellular Virus Envelope. Journal of Virology, 2008, 82, 2150-2160.	1.5	22
32	New vaccinia virus promoter as a potential candidate for future vaccines. Journal of General Virology, 2013, 94, 2771-2776.	1.3	22
33	Potential To Streamline Heterologous DNA Prime and NYVAC/Protein Boost HIV Vaccine Regimens in Rhesus Macaques by Employing Improved Antigens. Journal of Virology, 2016, 90, 4133-4149.	1.5	22
34	Safety and vaccine-induced HIV-1 immune responses in healthy volunteers following a late MVA-B boost 4 years after the last immunization. PLoS ONE, 2017, 12, e0186602.	1.1	20
35	Replication-Competent NYVAC-KC Yields Improved Immunogenicity to HIV-1 Antigens in Rhesus Macaques Compared to Nonreplicating NYVAC. Journal of Virology, 2019, 93, .	1.5	13
36	A Novel MVA-Based HIV Vaccine Candidate (MVA-gp145-GPN) Co-Expressing Clade C Membrane-Bound Trimeric gp145 Env and Gag-Induced Virus-Like Particles (VLPs) Triggered Broad and Multifunctional HIV-1-Specific T Cell and Antibody Responses. Viruses, 2019, 11, 160.	1.5	12

BEATRIZ PERDIGUERO

#	Article	IF	CITATIONS
37	Enhancement of the HIV-1-Specific Immune Response Induced by an mRNA Vaccine through Boosting with a Poxvirus MVA Vector Expressing the Same Antigen. Vaccines, 2021, 9, 959.	2.1	11
38	A Novel HIV Vaccine Adjuvanted by IC31 Induces Robust and Persistent Humoral and Cellular Immunity. PLoS ONE, 2012, 7, e42163.	1.1	11
39	Interleukin-1- and Type I Interferon-Dependent Enhanced Immunogenicity of an NYVAC-HIV-1 Env-Gag-Pol-Nef Vaccine Vector with Dual Deletions of Type I and Type II Interferon-Binding Proteins. Journal of Virology, 2015, 89, 3819-3832.	1.5	10
40	Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates. Journal of Virology, 2018, 92, .	1.5	10
41	Potent HIV-1-Specific CD8 T Cell Responses Induced in Mice after Priming with a Multiepitopic DNA-TMEP and Boosting with the HIV Vaccine MVA-B. Viruses, 2018, 10, 424.	1.5	9
42	Immune Modulation of NYVAC-Based HIV Vaccines by Combined Deletion of Viral Genes that Act on Several Signalling Pathways. Viruses, 2018, 10, 7.	1.5	9
43	Heterologous Combination of VSV-GP and NYVAC Vectors Expressing HIV-1 Trimeric gp145 Env as Vaccination Strategy to Induce Balanced B and T Cell Immune Responses. Frontiers in Immunology, 2019, 10, 2941.	2.2	9
44	Enhancement of HIV-1 Env-Specific CD8 T Cell Responses Using Interferon-Stimulated Gene 15 as an Immune Adjuvant. Journal of Virology, 2020, 95, .	1.5	6
45	Induction of Broad and Polyfunctional HIV-1-Specific T Cell Responses by the Multiepitopic Protein TMEP-B Vectored by MVA Virus. Vaccines, 2019, 7, 57.	2.1	5
46	The Envelope-Based Fusion Antigen GP120C14K Forming Hexamer-Like Structures Triggers T Cell and Neutralizing Antibody Responses Against HIV-1. Frontiers in Immunology, 2019, 10, 2793.	2.2	2