Sudhir K Sastry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6109688/publications.pdf

Version: 2024-02-01

179 6,869 46
papers citations h-index

181 181 181 2562 all docs docs citations times ranked citing authors

85541

71

g-index

#	Article	IF	CITATIONS
1	Guidelines on reporting treatment conditions for emerging technologies in food processing. Critical Reviews in Food Science and Nutrition, 2022, 62, 5925-5949.	10.3	34
2	A microfluidic approach for studying microcolonization of <i>Escherichia coli</i> O157:H7 on leaf trichomeâ€mimicking surfaces under fluid shear stress. Biotechnology and Bioengineering, 2022, 119, 1556-1566.	3.3	2
3	Ohmic Heating for Food Processing: Methods and Procedures Related to Process Parameters. , 2022, , 181-193.		O
4	Electrical conductivity of foods and food components: The influence of formulation processes. Journal of Food Process Engineering, 2022, 45, .	2.9	1
5	Nonthermal inactivation of polyphenol oxidase in apple juice influenced by moderate electric fields: Effects of periodic on-off and constant exposure electrical treatments. Innovative Food Science and Emerging Technologies, 2022, 77, 102955.	5.6	10
6	Effects of combination shear stress, moderate electric field (MEF), and nisin on kinetics and mechanisms of inactivation of Escherichia coli K12 and Listeria innocua in fresh apple-kale blend juice. Journal of Food Engineering, 2021, 292, 110262.	5.2	8
7	Factors affecting contamination and infiltration of Escherichia coli K12 into spinach leaves during vacuum cooling. Journal of Food Engineering, 2021, 311, 110735.	5.2	4
8	Molecular dynamics evidence for nonthermal effects of electric fields on pectin methylesterase activity. Physical Chemistry Chemical Physics, 2021, 23, 14422-14432.	2.8	14
9	Spatial persistence of Escherichia coli O157:H7 flowing on micropatterned structures inspired by stomata and microgrooves of leafy greens. Innovative Food Science and Emerging Technologies, 2021, 75, 102889.	5.6	3
10	Ohmic heating as a promising technique for extraction of herbal essential oils: Understanding mechanisms, recent findings, and associated challenges. Advances in Food and Nutrition Research, 2020, 91, 227-273.	3.0	26
11	Moderate Electric Field Treatment Enhances Enzymatic Hydrolysis of Cellulose at Below-Optimal Temperatures. Enzyme and Microbial Technology, 2020, 142, 109678.	3.2	8
12	High pressure processing of tamarind (Tamarindus indica) seed for xyloglucan extraction. LWT - Food Science and Technology, 2020, 134, 110112.	5.2	21
13	Ohmic-assisted peeling of fruits: Understanding the mechanisms involved, effective parameters, and prospective applications in the food industry. Trends in Food Science and Technology, 2020, 106, 345-354.	15.1	16
14	Effect of Electric Field on Pectinesterase Inactivation During Orange Juice Pasteurization by Ohmic Heating. Food and Bioprocess Technology, 2020, 13, 1206-1214.	4.7	25
15	Synergistic effects of shear stress, moderate electric field, and nisin for the inactivation of Escherichia coli K12 and Listeria innocua in clear apple juice. Food Control, 2020, 113, 107209.	5.5	23
16	Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: a critical review. Current Opinion in Food Science, 2020, 35, 36-48.	8.0	90
17	Mechanism of Bacillus subtilis spore inactivation induced by moderate electric fields. Innovative Food Science and Emerging Technologies, 2020, 62, 102349.	5.6	17
18	Effect of moderate electric field pretreatment in combination with ozonation on inactivation of Escherichia coli K12 in intact shell eggs. LWT - Food Science and Technology, 2020, 127, 109338.	5.2	7

#	Article	IF	Citations
19	In-situ monitoring of inactivation of Listeria innocua under high hydrostatic pressure using electrical conductivity measurement. Journal of Food Engineering, 2020, 285, 110087.	5.2	3
20	Effects of frequency on the electrical conductivity of whole shell egg components. Journal of Food Process Engineering, 2019, 42, e13056.	2.9	4
21	Novel Processing Technologies as Compared to Thermal Treatment on the Bioaccessibility and Caco-2 Cell Uptake of Carotenoids from Tomato and Kale-Based Juices. Journal of Agricultural and Food Chemistry, 2019, 67, 10185-10194.	5. 2	19
22	Mechanisms of enhanced bacterial endospore inactivation during sterilization by ohmic heating. Bioelectrochemistry, 2019, 130, 107338.	4.6	19
23	Combined effect of shear stress and moderate electric field on the inactivation of Escherichia coli K12 in apple juice. Journal of Food Engineering, 2019, 262, 121-130.	5.2	20
24	Polyphenol oxidase inactivation in viscous fluids by ohmic heating and conventional thermal processing. Journal of Food Process Engineering, 2019, 42, e13133.	2.9	9
25	Effects of combined high pressure (HPP), pulsed electric field (PEF) and sonication treatments on inactivation of Listeria innocua. Journal of Food Engineering, 2018, 233, 49-56.	5.2	34
26	In-situ activity of \hat{l}_{\pm} -amylase in the presence of controlled-frequency moderate electric fields. LWT - Food Science and Technology, 2018, 90, 448-454.	5.2	39
27	Ohmic Heating Assisted Lye Peeling of Pears. Journal of Food Science, 2018, 83, 1292-1298.	3.1	16
28	Application of a moderate electric field for the potential acceleration of the salting process of Atlantic salmon (<scp><i>Salmo salar</i></scp>). Journal of Food Process Engineering, 2018, 41, e12846.	2.9	13
29	Effect of concentration and consistency on ohmic heating. Journal of Food Process Engineering, 2018, 41, e12883.	2.9	12
30	Extraction from Food and Natural Products by Moderate Electric Field: Mechanisms, Benefits, and Potential Industrial Applications. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 1040-1052.	11.7	91
31	Fresh produce sanitization by combination of gaseous ozone and liquid sanitizer. Journal of Food Engineering, 2017, 210, 19-26.	5.2	8
32	Reduction of <i>Escherichia coli</i> O157:H7 population on baby spinach leaves by liquid sanitizers. Journal of Food Process Engineering, 2017, 40, e12479.	2.9	2
33	Toward a Philosophy and Theory of Volumetric Nonthermal Processing. Journal of Food Science, 2016, 81, E1431-46.	3.1	10
34	Effect of moderate electric fields on inactivation kinetics of pectin methylesterase in tomatoes: The roles of electric field strength and temperature. Journal of Food Engineering, 2016, 186, 17-26.	5.2	49
35	Tomato peeling by ohmic heating with lye-salt combinations: Effects of operational parameters on peeling time and skin diffusivity. Journal of Food Engineering, 2016, 186, 10-16.	5.2	20
36	Multiple effect concentration of ethanol by ohmic-assisted hydrodistillation. Food and Bioproducts Processing, 2016, 100, 85-91.	3.6	18

#	Article	IF	CITATIONS
37	Gaseous ozone treatment of baby spinach within the existing production chain for inactivation of Escherichia coli O157:H7. Journal of Food Engineering, 2016, 191, 10-18.	5.2	21
38	Ethanol concentration of fermented broth by ohmic-assisted hydrodistillation. Innovative Food Science and Emerging Technologies, 2016, 35, 45-51.	5 . 6	30
39	Effects of controlled-frequency moderate electric fields on pectin methylesterase and polygalacturonase activities in tomato homogenate. Food Chemistry, 2016, 199, 265-272.	8.2	78
40	Ohmic-assisted hydrodistillation: A novel method for ethanol distillation. Food and Bioproducts Processing, 2016, 98, 44-49.	3.6	46
41	Tomato peeling by ohmic heating: Effects of lye-salt combinations and post-treatments on weight loss, peeling quality and firmness. Innovative Food Science and Emerging Technologies, 2016, 34, 148-153.	5 . 6	22
42	In Situ Thermal, Volumetric and Electrical Properties of Food Matrices Under Elevated Pressure and the Techniques Employed to Measure Them. Food Engineering Series, 2016, , 97-121.	0.7	0
43	Physics of Fresh Produce Safety: Role of Diffusion and Tissue Reaction in Sanitization of Leafy Green Vegetables with Liquid and Gaseous Ozone-Based Sanitizers. Journal of Food Protection, 2015, 78, 2108-2116.	1.7	29
44	Effect of ohmic heating on tomato peeling. LWT - Food Science and Technology, 2015, 61, 269-274.	5. 2	33
45	Ascorbic acid degradation and color changes in acerola pulp during ohmic heating: Effect of electric field frequency. Journal of Food Engineering, 2014, 123, 1-7.	5 . 2	89
46	Effect of the Electric Field Frequency on Ascorbic Acid Degradation during Thermal Treatment by Ohmic Heating. Journal of Agricultural and Food Chemistry, 2014, 62, 5865-5870.	5 . 2	27
47	Quality of shelf-stable low-acid vegetables processed using pressure–ohmic–thermal sterilization. LWT - Food Science and Technology, 2014, 57, 243-252.	5.2	35
48	Inactivation kinetics of Bacillus coagulans spores under ohmic and conventional heating. LWT - Food Science and Technology, 2013, 54, 194-198.	5.2	61
49	Mathematical modeling and microbiological verification of ohmic heating of a solid–liquid mixture in a continuous flow ohmic heater system with electric field perpendicular to flow. Journal of Food Engineering, 2013, 118, 312-325.	5.2	24
50	Challenges facing food engineering. Journal of Food Engineering, 2013, 119, 332-342.	5.2	58
51	In-situ pH measurement of selected liquid foods under high pressure. Innovative Food Science and Emerging Technologies, 2013, 17, 22-26.	5.6	35
52	Pressure–ohmic–thermal sterilization: A feasible approach for the inactivation of Bacillus amyloliquefaciens and Geobacillus stearothermophilus spores. Innovative Food Science and Emerging Technologies, 2013, 19, 115-123.	5.6	38
53	Estimating pressure induced changes in vegetable tissue using in situ electrical conductivity measurement and instrumental analysis. Journal of Food Engineering, 2013, 114, 47-56.	5.2	24
54	Mathematical Modeling and Microbiological Verification of Ohmic Heating of a Multicomponent Mixture of Particles in a Continuous Flow Ohmic Heater System with Electric Field Parallel to Flow. Journal of Food Science, 2013, 78, E1721-34.	3.1	16

#	Article	IF	CITATIONS
55	Effect of Temperature on Salt Diffusion into Vegetable Tissue. International Journal of Food Properties, 2012, 15, 1148-1160.	3.0	9
56	Thermal Inactivation Kinetics of Bacillus coagulans Spores in Tomato Juice. Journal of Food Protection, 2012, 75, 1236-1242.	1.7	20
57	Determination of In-Situ Thermal Conductivity, Thermal Diffusivity, Volumetric Specific Heat and Isobaric Specific Heat of Selected Foods Under Pressure. International Journal of Food Properties, 2012, 15, 169-187.	3.0	27
58	Ohmic sterilization inside a multi-layered laminate pouch for long-duration space missions. Journal of Food Engineering, 2012, 112, 134-143.	5.2	17
59	Effect of ohmic heating and vacuum impregnation on the osmodehydration kinetics and microstructure of strawberries (cv. Camarosa). LWT - Food Science and Technology, 2012, 45, 148-154.	5.2	46
60	Accelerated inactivation of Geobacillus stearothermophilus spores by ohmic heating. Journal of Food Engineering, 2012, 108, 69-76.	5.2	74
61	Simulation and optimization of the ohmic processing of highly viscous food product in chambers with sidewise parallel electrodes. Journal of Food Engineering, 2012, 110, 448-456.	5.2	16
62	Effect of moderate electric fields on salt diffusion into vegetable tissue. Journal of Food Engineering, 2012, 110, 329-336.	5.2	36
63	<i>In Situ</i> Measurement of Reaction Volume and Calculation of pH of Weak Acid Buffer Solutions Under High Pressure. Journal of Physical Chemistry B, 2011, 115, 6564-6571.	2.6	13
64	Compressibility and density of select liquid and solid foods under pressures up to 700MPa. Journal of Food Engineering, 2010, 96, 568-574.	5.2	46
65	Ohmic Heating of Peaches in the Wide Range of Frequencies (50 Hz to 1 MHz). Journal of Food Science, 2010, 75, E493-500.	3.1	48
66	Ohmic Heating. , 2010, , 1142-1146.		1
67	In Situ Measurement of pH Under High Pressure. Journal of Physical Chemistry B, 2010, 114, 13326-13332.	2.6	36
68	Changes in permeability of moderate electric field (MEF) treated vegetable tissue over time. Innovative Food Science and Emerging Technologies, 2010, 11, 78-83.	5.6	35
69	Inactivation of Escherichia coli O157:H7 and Natural Microbiota on Spinach Leaves Using Gaseous Ozone during Vacuum Cooling and Simulated Transportation. Journal of Food Protection, 2009, 72, 1538-1546.	1.7	57
70	Effect of moderate electric field frequency and growth stage on the cell membrane permeability of <i>Lactobacillus acidophilus (i). Biotechnology Progress, 2009, 25, 85-94.</i>	2.6	80
71	Heating and Sterilization Technology for Long-duration Space Missions. Annals of the New York Academy of Sciences, 2009, 1161, 562-569.	3.8	14
72	Residence Time Distribution (RTD) of Particulate Foods in a Continuous Flow Pilotâ€Scale Ohmic Heater. Journal of Food Science, 2009, 74, E322-7.	3.1	10

#	Article	lF	Citations
73	Measurement of residence time distribution of a multicomponent system inside an ohmic heater using radio frequency identification. Journal of Food Engineering, 2009, 93, 313-317.	5.2	18
74	Variable volume piezometer for measurement of volumetric properties of materials under high pressure. High Pressure Research, 2009, 29, 278-289.	1.2	9
75	Moderate Electrothermal Treatments of Cellular Tissues. Food Engineering Series, 2009, , 83-94.	0.7	2
76	Electrical conductivity of fruits and meats during ohmic heating. Journal of Food Engineering, 2008, 87, 351-356.	5.2	210
77	Effect of Moderate Electric Field Frequency on Growth Kinetics and Metabolic Activity of Lactobacillus acidophilus. Biotechnology Progress, 2008, 24, 148-153.	2.6	61
78	Ohmic Heating and Moderate Electric Field Processing. Food Science and Technology International, 2008, 14, 419-422.	2.2	113
79	Electrical Conductivity of Multicomponent Systems During Ohmic Heating. International Journal of Food Properties, 2008, 11, 233-241.	3.0	52
80	Modeling of Ohmic Heating of Foods. Food Additives, 2008, , 143-171.	0.1	0
81	Diffusion coefficient of orange juice flavor compounds into packaging materials: A mathematical model. LWT - Food Science and Technology, 2007, 40, 157-163.	5.2	8
82	Migration of electrode components during ohmic heating of foods in retort pouches. Innovative Food Science and Emerging Technologies, 2007, 8, 237-243.	5.6	25
83	Effect of moderate electric field on the metabolic activity and growth kinetics of Lactobacillus acidophilus. Biotechnology and Bioengineering, 2007, 98, 872-881.	3.3	46
84	Diffusion and equilibrium distribution coefficients of salt within vegetable tissue: Effects of salt concentration and temperature. Journal of Food Engineering, 2007, 82, 377-382.	5.2	16
85	Experimental investigation of ohmic heating of solid–liquid mixtures under worst-case heating scenarios. Journal of Food Engineering, 2007, 83, 324-336.	5. 2	60
86	In situ electrical conductivity measurement of select liquid foods under hydrostatic pressure to 800MPa. Journal of Food Engineering, 2007, 82, 489-497.	5.2	14
87	Models for ohmic heating of solid–liquid mixtures under worst-case heating scenarios. Journal of Food Engineering, 2007, 83, 337-355.	5.2	46
88	Thermal conductivity of selected liquid foods at elevated pressures up to 700MPa. Journal of Food Engineering, 2007, 83, 444-451.	5 . 2	25
89	Product Formulation for Ohmic Heating: Blanching as a Pretreatment Method to Improve Uniformity in Heating of Solid?Liquid Food Mixtures. Journal of Food Science, 2007, 72, E227-E234.	3.1	51
90	EFFECTS OF OHMIC PRETREATMENT ON OIL UPTAKE OF POTATO SLICES DURING FRYING AND SUBSEQUENT COOLING. Journal of Food Process Engineering, 2007, 30, 1-12.	2.9	13

#	Article	IF	Citations
91	Reusable pouch development for long term space missions: A 3D ohmic model for verification of sterilization efficacy. Journal of Food Engineering, 2007, 80, 1199-1205.	5.2	37
92	Low-frequency dielectric changes in cellular food material from ohmic heating: Effect of end point temperature. Innovative Food Science and Emerging Technologies, 2006, 7, 257-262.	5.6	48
93	Influence of temperature, electrical conductivity, power and pH on ascorbic acid degradation kinetics during ohmic heating using stainless steel electrodes. Bioelectrochemistry, 2006, 68, 7-13.	4.6	35
94	Electrode and pH effects on electrochemical reactions during ohmic heating. Journal of Electroanalytical Chemistry, 2005, 577, 125-135.	3.8	130
95	Pulsed Ohmic Heating–A Novel Technique for Minimization of Electrochemical Reactions During Processing. Journal of Food Science, 2005, 70, e460.	3.1	71
96	MODELING AND OPTIMIZATION OF OHMIC HEATING OF FOODS INSIDE A FLEXIBLE PACKAGE. Journal of Food Process Engineering, 2005, 28, 417-436.	2.9	66
97	Reheating and Sterilization Technology for Food, Waste and Water: Design and Development Considerations for Package and Enclosure. , 2005, , .		1
98	Effect of Ohmic Pretreatment on the Drying Rate of Grapes and Adsorption Isotherm of Raisins. Drying Technology, 2005, 23, 551-564.	3.1	38
99	Extraction Using Moderate Electric Fields. Journal of Food Science, 2004, 69, FEP7-FEP13.	3.1	102
100	OHMIC BLANCHING of MUSHROOMS. Journal of Food Process Engineering, 2004, 27, 1-15.	2.9	48
101	Orientation distribution of solids in continuous solid–liquid flow in a vertical tube. Chemical Engineering Science, 2004, 59, 2767-2775.	3.8	5
102	Degradation kinetics of ascorbic acid during ohmic heating with stainless steel electrodes. Journal of Applied Electrochemistry, 2003, 33, 187-196.	2.9	75
103	Solid area fraction distribution of solid–liquid food mixtures during flow through a straight tube. Journal of Food Engineering, 2003, 60, 81-87.	5.2	1
104	THE INFLUENCE of FIELD STRENGTH, SUGAR and SOLID CONTENT ON ELECTRICAL CONDUCTIVITY of STRAWBERRY PRODUCTS. Journal of Food Process Engineering, 2003, 26, 17-29.	2.9	95
105	Frequency and voltage effects on enhanced diffusion during moderate electric field (MEF) treatment. Innovative Food Science and Emerging Technologies, 2003, 4, 189-194.	5.6	122
106	Ohmic Heating And Moderate Electric Field (MEF) Processing. Food Preservation Technology, 2002, , .	0.0	4
107	Effects of moderate electrothermal treatments on juice yield from cellular tissue. Innovative Food Science and Emerging Technologies, 2002, 3, 371-377.	5. 6	112
108	Investigation of three dimensional interstitial velocity, solids motion, and orientation in solid–liquid flow using particle tracking velocimetry. International Journal of Multiphase Flow, 2001, 27, 1397-1414.	3.4	32

#	Article	lF	CITATIONS
109	DIFFUSION OF BEET DYE DURING ELECTRICAL AND CONVENTIONAL HEATING AT STEADY-STATE TEMPERATURE. Journal of Food Process Engineering, 2001, 24, 331-340.	2.9	46
110	Growth kinetics of Lactobacillus acidophilus under ohmic heating., 2000, 49, 334-340.		88
111	Ohmic and Inductive Heating. Journal of Food Science, 2000, 65, 42-46.	3.1	140
112	Ultraviolet Light. Journal of Food Science, 2000, 65, 90-92.	3.1	106
113	EFFECTS OF THERMAL AND ELECTROTHERMAL PRETREATMENTS ON HOT AIR DRYING RATE OF VEGETABLE TISSUE. Journal of Food Process Engineering, 2000, 23, 299-319.	2.9	61
114	Ohmic and Inductive Heating. Journal of Food Safety, 2000, 65, 42-46.	2.3	7
115	Effective thermal conductivity of potato during frying: Measurement and modeling. International Journal of Food Properties, 1999, 2, 151-161.	3.0	2
116	The determination of convective heat transfer coefficient during frying. Journal of Food Engineering, 1999, 39, 307-311.	5.2	51
117	The effects of ohmic heating frequency on hot-air drying rate and juice yield. Journal of Food Engineering, 1999, 41, 115-119.	5.2	134
118	THE EFFECT OF FREQUENCY AND WAVE FORM ON THE ELECTRICAL CONDUCTIVITY-TEMPERATURE PROFILES OF TURNIP TISSUE. Journal of Food Process Engineering, 1999, 22, 41-54.	2.9	45
119	ASCORBIC ACID DEGRADATION KINETICS DURING CONVENTIONAL and OHMIC HIEATING. Journal of Food Processing and Preservation, 1999, 23, 421-443.	2.0	58
120	Kinetics of inactivation of Bacillus subtilis spores by continuous or intermittent ohmic and conventional heating., 1999, 62, 368-372.		96
121	OHMIC HEATING OF SOLID-LIQUID MIXTURES: A COMPARISON OF MATHEMATICAL MODELS UNDER WORST-CASE HEATING CONDITIONS. Journal of Food Process Engineering, 1998, 21, 441-458.	2.9	83
122	ON-LINE PREDICTION OF BOSTWICK CONSISTENCY FROM PRESSURE DIFFERENTIAL IN PIPE FLOW FOR KETCHUP AND RELATED TOMATO PRODUCTS. Journal of Food Processing and Preservation, 1998, 22, 211-220.	2.0	16
123	A numerical investigation of electroconductive heating in solid-liquid mixtures. International Journal of Heat and Mass Transfer, 1998, 41, 2211-2220.	4.8	30
124	Bulk Average Heat Transfer Coefficient of Multiple Particles Flowing in a Holding Tube. Food and Bioproducts Processing, 1998, 76, 95-101.	3.6	0
125	RESIDENCE TIME DISTRIBUTION OF FOOD AND SIMULATED PARTICLES IN A MODEL HORIZONTAL SWEPT SURFACE HEAT EXCHANGER. Journal of Food Process Engineering, 1998, 21, 145-180.	2.9	12
126	The effect of translational and rotational relative velocity components on fluid-to-particle heat transfer coefficients in continuous tube flow. Food Research International, 1997, 30, 21-27.	6.2	3

#	Article	IF	Citations
127	7th international congress on engineering and food. Trends in Food Science and Technology, 1997, 8, 245-247.	15.1	2
128	INACTIVATION KINETICS OF SALMONELLA DUBLIN BY PULSED ELECTRIC FIELD. Journal of Food Process Engineering, 1997, 20, 367-381.	2.9	138
129	CHANGES IN ELECTRICAL CONDUCTIVITY OF SELECTED VEGETABLES DURING MULTIPLE THERMAL TREATMENTS. Journal of Food Process Engineering, 1997, 20, 499-516.	2.9	59
130	Dimensionless analysis of the flow of spherical particles in two-phase flow in straight tubes. Journal of Food Engineering, 1997, 31, 125-136.	5.2	4
131	Dimensionless analysis of fluid-to-particle heat transfer coefficients. Journal of Food Engineering, 1997, 31, 199-218.	5.2	13
132	Starch gelatinization in ohmic heating. Journal of Food Engineering, 1997, 34, 225-242.	5.2	69
133	Residence time distribution of food and simulated particles in a holding tube. Journal of Food Engineering, 1997, 34, 271-292.	5.2	24
134	Effect of fluid viscosity on the ohmic heating rate of solid-liquid mixtures. Journal of Food Engineering, 1996, 27, 145-158.	5.2	48
135	Recommended design parameters for thermal conductivity probes for nonfrozen food materials. Journal of Food Engineering, 1996, 27, 109-123.	5.2	46
136	Residence time distribution of cylindrical particles in a curved section of a holding tube: the effect of particle concentration and bend radius of curvature. Journal of Food Engineering, 1996, 27, 159-176.	5.2	18
137	Analysis of various design and operating parameters of the thermal conductivity probe. Journal of Food Engineering, 1996, 30, 209-225.	5.2	31
138	FLUID to PARTICLE CONVECTIVE HEAT TRANSFER COEFFICIENT IN A HORIZONTAL SCRAPED SURFACE HEAT EXCHANGER DETERMINED FROM RELATIVE VELOCITY MEASUREMENT. Journal of Food Process Engineering, 1996, 19, 75-95.	2.9	6
139	ESTIMATION of CONVECTIVE HEAT TRANSFER BETWEEN FLUID and PARTICLE IN CONTINUOUS FLOW USING A REMOTE TEMPERATURE SENSOR. Journal of Food Process Engineering, 1996, 19, 223-240.	2.9	7
140	EFFECT OF PRODUCT AND PROCESS VARIABLES IN THE FLOW OF SPHERICAL PARTICLES IN A CARRIER FLUID THROUGH STRAIGHT TUBES. Journal of Food Processing and Preservation, 1996, 20, 467-486.	2.0	10
141	Liquid-to-particle heat transfer in continuous tube flow: Comparison between experimental techniques. International Journal of Food Science and Technology, 1996, 31, 177-187.	2.7	4
142	RESIDENCE TIME DISTRIBUTION of CYLINDRICAL PARTICLES IN A CURVED SECTION of A HOLDING TUBE: the EFFECT of PARTICLE SIZE and FLOW RATE. Journal of Food Process Engineering, 1995, 18, 363-381.	2.9	9
143	Use of liquid crystals as temperature sensors in food processing research. Journal of Food Engineering, 1995, 26, 219-230.	5.2	27
144	Liquid-to-particle convective heat transfer in non-Newtonian carrier medium during continuous tube flow. Journal of Food Engineering, 1994, 23, 169-187.	5.2	36

#	Article	IF	Citations
145	DETERMINATION of CONVECTIVE HEAT TRANSFER COEFFICIENT BETWEEN FLUID and CUBIC PARTICLES IN CONTINUOUS TUBE FLOW USING NONINVASIVE EXPERIMENTAL TECHNIQUES. Journal of Food Process Engineering, 1994, 17, 209-228.	2.9	30
146	CONVECTIVE HEAT TRANSFER COEFFICIENT FOR CUBIC PARTICLES IN CONTINUOUS TUBE FLOW USING the MOVING THERMOCOUPLE METHOD. Journal of Food Process Engineering, 1994, 17, 229-241.	2.9	17
147	Convective Heat Transfer at Particle-Liquid Interface in Continuous Tube Flow at Elevated Fluid Temperatures. Journal of Food Science, 1994, 59, 675-681.	3.1	24
148	Continuous Sterilization of Particulate Foods by Ohmic Heating: Critical Process Design Considerations., 1994,, 769-771.		3
149	Salt diffusion into vegetable tissue as a pretreatment for ohmic heating: Electrical conductivity profiles and vacuum infusion studies. Journal of Food Engineering, 1993, 20, 299-309.	5. 2	64
150	Salt diffusion into vegetable tissue as a pretreatment for ohmic heating: Determination of parameters and mathematical model verification. Journal of Food Engineering, 1993, 20, 311-323.	5. 2	46
151	INFLUENCE of PARTICLE ORIENTATION ON the EFFECTIVE ELECTRICAL RESISTANCE and OHMIC HEATING RATE of A LIQUID-PARTICLE MIXTURE. Journal of Food Process Engineering, 1992, 15, 213-227.	2.9	35
152	MATHEMATICAL MODELING and EXPERIMENTAL STUDIES ON OHMIC HEATING of LIQUID-PARTICLE MIXTURES IN A STATIC HEATER. Journal of Food Process Engineering, 1992, 15, 241-261.	2.9	116
153	A MODEL FOR HEATING of LIQUID-PARTICLE MIXTURES IN A CONTINUOUS FLOW OHMIC HEATER. Journal of Food Process Engineering, 1992, 15, 263-278.	2.9	83
154	Effects of electroconductive heat treatment and electrical pretreatment on thermal death kinetics of selected microorganisms. Biotechnology and Bioengineering, 1992, 39, 225-232.	3.3	82
155	ELECTRICAL CONDUCTIVITIES of SELECTED SOLID FOODS DURING OHMIC HEATING. Journal of Food Process Engineering, 1991, 14, 221-236.	2.9	221
156	ELECTRICAL CONDUCTIVITY of SELECTED JUICES: INFLUENCES of TEMPERATURE, SOLIDS CONTENT, APPLIED VOLTAGE, and PARTICLE SIZE. Journal of Food Process Engineering, 1991, 14, 247-260.	2.9	156
157	THE TEMPERATURE DIFFERENCE BETWEEN A MICROORGANISM and A LIQUID MEDIUM DURING MICROWAVE HEATING. Journal of Food Processing and Preservation, 1991, 15, 225-230.	2.0	9
158	Influence of Fluid Rheological Properties and Particle Location on Ultrasound-assisted Heat Transfer between Liquid and Particles. Journal of Food Science, 1990, 55, 1112-1115.	3.1	36
159	Velocity Distributions of Food Particle Suspensions In Holding Tube Flow: Distribution Characteristics and Fastest-Particle Velocities. Journal of Food Science, 1990, 55, 1703-1710.	3.1	62
160	Velocity Distributions of Food Particle Suspensions in Holding Tube Flow: Experimental and Modeling Studies on Average Particle Velocities. Journal of Food Science, 1990, 55, 1448-1453.	3.1	73
161	EFFECTS of ELECTRICITY ON MICROORGANISMS: A REVIEW. Journal of Food Processing and Preservation, 1990, 14, 393-414.	2.0	133
162	Convective heat transfer coefficients for irregular particles immersed in non-newtonian fluid during tube flow. Journal of Food Engineering, 1990, 11, 159-174.	5 . 2	45

#	Article	IF	CITATIONS
163	Effects of storage conditions on colour change of selected perishables. International Journal of Refrigeration, 1990, 13, 197-202.	3.4	4
164	Effects of refrigerated storage conditions on microbial activity of selected perishables. International Journal of Refrigeration, 1989, 12, 350-353.	3.4	3
165	Effect of Ultrasonic Vibration on Fluid-to-Particle Convective Heat Transfer Coefficients. Journal of Food Science, 1989, 54, 229-230.	3.1	40
166	Food Properties and Modeling Approaches of Importance in the Continuous Sterilization of Liquid-Particle Mixtures., 1989,, 117-119.		0
167	Kinetics of Shrinkage of Mushrooms during Blanching. Journal of Food Science, 1988, 53, 1406-1411.	3.1	20
168	A Bioindicator for Verification of Thermal Processes for Particulate Foods. Journal of Food Science, 1988, 53, 1528-1536.	3.1	36
169	A REVIEW of PARTICLE BEHAVIOR IN TUBE FLOW: APPLICATIONS to ASEPTIC PROCESSING. Journal of Food Process Engineering, 1987, 10, 27-52.	2.9	34
170	Effect of Packaging Materials on Temperature Fluctuations in Frozen Foods: Mathematical Model and Experimental Studies. Journal of Food Science, 1986, 51, 1050-1056.	3.1	31
171	Effect of Microwave Blanching on the Yield and Quality of Canned Mushrooms. Journal of Food Science, 1986, 51, 965-966.	3.1	14
172	Effect of Processing on Yield, Color and Texture of Canned Mushrooms. Journal of Food Science, 1986, 51, 1197-1200.	3.1	24
173	Mathematical Evaluation of Process Schedules for Aseptic Processing of Low-Acid Foods Containing Discrete Particulates. Journal of Food Science, 1986, 51, 1323-1328.	3.1	97
174	A Three-Dimensional Finite Element Model for Thermally Induced Changes in Foods: Application to Degradation of Agaritine in Canned Mushrooms. Journal of Food Science, 1985, 50, 1293-1299.	3.1	29
175	Thermal Degradation Kinetics of Agaritine in Model Systems and Agaritine Retention in Canned Mushrooms. Journal of Food Science, 1985, 50, 1306-1311.	3.1	1
176	Effects of Vacuum Hydration on the Incidence of Splits in Canned Kidney Beans (Phaseolus vulgaris). Journal of Food Science, 1985, 50, 1501-1502.	3.1	14
177	Numerical solution of a phase-change problem encountered during frost protection with overhead sprinkling. Biosystems Engineering, 1985, 31, 283-295.	0.4	1
178	Freezing Time Prediction: An Enthalpy-Based Approach. Journal of Food Science, 1984, 49, 1121-1127.	3.1	8
179	Temperature Response of Frozen Peas to Di-Thermal Storage Regimes. Journal of Food Science, 1983, 48, 77-83.	3.1	5