
Maarten Koornneef

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6108672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Molecular Genetics and Genomics, 1991, 229, 57-66.	2.4	955
2	The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiologia Plantarum, 1984, 61, 377-383.	5.2	873
3	Seed dormancy and germination. Current Opinion in Plant Biology, 2002, 5, 33-36.	7.1	793
4	Influence of the Testa on Seed Dormancy, Germination, and Longevity in Arabidopsis. Plant Physiology, 2000, 122, 403-414.	4.8	758
5	Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) heynh Theoretical and Applied Genetics, 1980, 58, 257-263.	3.6	629
6	NATURALLY OCCURRING GENETIC VARIATION INARABIDOPSIS THALIANA. Annual Review of Plant Biology, 2004, 55, 141-172.	18.7	610
7	Sucrose-Specific Induction of Anthocyanin Biosynthesis in Arabidopsis Requires the MYB75/PAP1 Gene. Plant Physiology, 2005, 139, 1840-1852.	4.8	593
8	The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) heynh Theoretical and Applied Genetics, 1982, 61, 385-393.	3.6	563
9	Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant Journal, 1995, 8, 659-671.	5.7	545
10	The Late Flowering Phenotype of fwa Mutants Is Caused by Gain-of-Function Epigenetic Alleles of a Homeodomain Gene. Molecular Cell, 2000, 6, 791-802.	9.7	545
11	Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh Planta, 1983, 157, 158-165.	3.2	543
12	Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proceedings of the United States of America, 2006, 103, 17042-17047.	7.1	526
13	The TRANSPARENT TESTA12 Gene of Arabidopsis Encodes a Multidrug Secondary Transporter-like Protein Required for Flavonoid Sequestration in Vacuoles of the Seed Coat Endothelium. Plant Cell, 2001, 13, 853-871.	6.6	489
14	Large Expression Differences in Genes for Iron and Zinc Homeostasis, Stress Response, and Lignin Biosynthesis Distinguish Roots of Arabidopsis thaliana and the Related Metal Hyperaccumulator Thlaspi caerulescens. Plant Physiology, 2006, 142, 1127-1147.	4.8	477
15	Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant Journal, 1996, 10, 655-661.	5.7	456
16	The genetics of plant metabolism. Nature Genetics, 2006, 38, 842-849.	21.4	454
17	GENETIC CONTROL OF FLOWERING TIME IN ARABIDOPSIS. Annual Review of Plant Biology, 1998, 49, 345-370.	14.3	445
18	What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation?. Plant Cell, 2009, 21, 1877-1896.	6.6	401

2

#	Article	IF	CITATIONS
19	Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends in Plant Science, 2000, 5, 22-29.	8.8	398
20	Arabidopsis thaliana: A Model Plant for Genome Analysis. , 1998, 282, 662-682.		397
21	The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12908-12913.	7.1	397
22	A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nature Genetics, 2001, 29, 435-440.	21.4	387
23	Gibberellin Requirement for Arabidopsis Seed Germination Is Determined Both by Testa Characteristics and Embryonic Abscisic Acid. Plant Physiology, 2000, 122, 415-424.	4.8	366
24	Analysis of Natural Allelic Variation at Seed Dormancy Loci of <i>Arabidopsis thaliana</i> . Genetics, 2003, 164, 711-729.	2.9	359
25	Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant Journal, 1998, 14, 259-271.	5.7	355
26	The development of Arabidopsis as a model plant. Plant Journal, 2010, 61, 909-921.	5.7	340
27	Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1708-1713.	7.1	329
28	<i>In Vivo</i> Inhibition of Seed Development and Reserve Protein Accumulation in Recombinants of Abscisic Acid Biosynthesis and Responsiveness Mutants in <i>Arabidopsis thaliana</i> . Plant Physiology, 1989, 90, 463-469.	4.8	324
29	The Absence of Histone H2B Monoubiquitination in the Arabidopsis hub1 (rdo4) Mutant Reveals a Role for Chromatin Remodeling in Seed Dormancy. Plant Cell, 2007, 19, 433-444.	6.6	279
30	Seed Dormancy and Germination. The Arabidopsis Book, 2008, 6, e0119.	0.5	279
31	Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant Journal, 2002, 30, 373-383.	5.7	268
32	Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4710-4717.	7.1	257
33	System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nature Genetics, 2009, 41, 166-167.	21.4	249
34	The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. Plant Journal, 1999, 19, 387-398.	5.7	237
35	Genotype × environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends in Plant Science, 2014, 19, 390-398.	8.8	237
36	The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type. Plant Journal, 1994, 6, 911-919.	5.7	225

#	Article	IF	CITATIONS
37	Analysis of Natural Allelic Variation at Flowering Time Loci in the Landsberg erecta and Cape Verde Islands Ecotypes of Arabidopsis thaliana. Genetics, 1998, 149, 749-764.	2.9	225
38	A fortunate choice: the history of Arabidopsis as a model plant. Nature Reviews Genetics, 2002, 3, 883-889.	16.3	220
39	Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant Journal, 2006, 49, 38-45.	5.7	219
40	Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana, a long-day plant. Physiologia Plantarum, 1991, 83, 209-215.	5.2	217
41	Analysis of Natural Allelic Variation of Arabidopsis Seed Germination and Seed Longevity Traits between the Accessions Landsberg erecta and Shakdara, Using a New Recombinant Inbred Line Population. Plant Physiology, 2004, 135, 432-443.	4.8	216
42	ANTHOCYANINLESS2, a Homeobox Gene Affecting Anthocyanin Distribution and Root Development in Arabidopsis. Plant Cell, 1999, 11, 1217-1226.	6.6	214
43	Development of a Near-Isogenic Line Population of Arabidopsis thaliana and Comparison of Mapping Power With a Recombinant Inbred Line Population. Genetics, 2007, 175, 891-905.	2.9	214
44	Genetic Analysis of Seed-Soluble Oligosaccharides in Relation to Seed Storability of Arabidopsis. Plant Physiology, 2000, 124, 1595-1604.	4.8	205
45	Genetic relationships within Brassica rapa as inferred from AFLP fingerprints. Theoretical and Applied Genetics, 2005, 110, 1301-1314.	3.6	199
46	The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana. ELife, 2013, 2, e01426.	6.0	197
47	Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4264-4269.	7.1	194
48	The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiology and Biochemistry, 1998, 36, 83-89.	5.8	186
49	A Seed Shape Mutant of Arabidopsis That Is Affected in Integument Development Plant Cell, 1994, 6, 385-392.	6.6	176
50	Chromosome-level assembly of <i>Arabidopsis thaliana</i> L <i>er</i> reveals the extent of translocation and inversion polymorphisms. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4052-60.	7.1	176
51	Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant Journal, 1999, 20, 67-77.	5.7	171
52	Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2994-2999.	7.1	171
53	A genetic analysis of cell culture traits in tomato. Theoretical and Applied Genetics, 1987, 74, 633-641.	3.6	157
54	The earliest stages of adaptation in an experimental plant population: strong selection on QTLS for seed dormancy. Molecular Ecology, 2010, 19, 1335-1351.	3.9	156

#	Article	IF	CITATIONS
55	Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana. Plant, Cell and Environment, 2004, 27, 828-839.	5.7	155
56	Next generation of elevated [CO ₂] experiments with crops: a critical investment for feeding the future world. Plant, Cell and Environment, 2008, 31, 1317-1324.	5.7	154
57	Genetic and Molecular Analyses of Natural Variation Indicate CBF2 as a Candidate Gene for Underlying a Freezing Tolerance Quantitative Trait Locus in Arabidopsis. Plant Physiology, 2005, 139, 1304-1312.	4.8	149
58	<i>DOG1</i> expression is predicted by the seedâ€maturation environment and contributes to geographical variation in germination in <i>Arabidopsis thaliana</i> . Molecular Ecology, 2011, 20, 3336-3349.	3.9	144
59	Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. Journal of Experimental Botany, 2007, 58, 4005-4016.	4.8	142
60	Seed maturation in <i>Arabidopsis thaliana</i> is characterized by nuclear size reduction and increased chromatin condensation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20219-20224.	7.1	141
61	QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity, 1997, 79, 190-200.	2.6	139
62	Analysis of natural allelic variation in <i>Arabidopsis</i> using a multiparent recombinant inbred line population. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4488-4493.	7.1	137
63	Far-red light-insensitive, phytochrome A-deficient mutants of tomato. Molecular Genetics and Genomics, 1995, 246, 133-141.	2.4	135
64	The Conserved Splicing Factor SUA Controls Alternative Splicing of the Developmental Regulator <i>ABI3</i> in <i>Arabidopsis</i> Â Â. Plant Cell, 2010, 22, 1936-1946.	6.6	130
65	Co-Variation between Seed Dormancy, Growth Rate and Flowering Time Changes with Latitude in Arabidopsis thaliana. PLoS ONE, 2013, 8, e61075.	2.5	130
66	An integrated genetic/RFLP map of theArabidopsis thalianagenome. Plant Journal, 1993, 3, 745-754.	5.7	123
67	Quantitative Trait Locus Analysis of Growth-Related Traits in a New Arabidopsis Recombinant Inbred Population. Plant Physiology, 2004, 135, 444-458.	4.8	118
68	Natural variation at Strubbelig Receptor Kinase 3 drives immune-triggered incompatibilities between Arabidopsis thaliana accessions. Nature Genetics, 2010, 42, 1135-1139.	21.4	117
69	Genetic differences in seed longevity of various Arabidopsis mutants. Physiologia Plantarum, 2004, 121, 448-461.	5.2	114
70	The isolation and characterization of gibberellin-deficient mutants in tomato. Theoretical and Applied Genetics, 1990, 80, 852-857.	3.6	110
71	Characterization and mapping of a gene controlling shoot regeneration in tomato. Plant Journal, 1993, 3, 131-141.	5.7	108
72	Accumulation of C19-gibberellins in the gibberellin-insensitive dwarf mutantgai ofArabidopsis thaliana (L.) Heynh. Planta, 1990, 182, 501-505.	3.2	106

#	Article	IF	CITATIONS
73	RFLP markers linked to the root knot nematode resistance gene Mi in tomato. Theoretical and Applied Genetics, 1991, 81, 661-667.	3.6	104
74	Gene function beyond the single trait: natural variation, gene effects, and evolutionary ecology in Arabidopsis thaliana. Plant, Cell and Environment, 2005, 28, 2-20.	5.7	103
75	Physiological interactions of phytochromes A, B1 and B2 in the control of development in tomato. Plant Journal, 2000, 24, 345-356.	5.7	102
76	Paths to selection on life history loci in different natural environments across the native range of <i><scp>A</scp>rabidopsis thaliana</i> . Molecular Ecology, 2013, 22, 3552-3566.	3.9	101
77	Combined Genetic and Modeling Approaches Reveal That Epidermal Cell Area and Number in Leaves Are Controlled by Leaf and Plant Developmental Processes in Arabidopsis. Plant Physiology, 2008, 148, 1117-1127.	4.8	100
78	Integrative analyses of genetic variation in enzyme activities of primary carbohydrate metabolism reveal distinct modes of regulation in Arabidopsis thaliana. Genome Biology, 2008, 9, R129.	9.6	90
79	Association mapping of leaf traits, flowering time, and phytate content in Brassica rapa. Genome, 2007, 50, 963-973.	2.0	89
80	Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2. Plant Journal, 2001, 25, 427-440.	5.7	87
81	Somaclonal variation in tomato: effect of explant source and a comparison with chemical mutagenesis. Theoretical and Applied Genetics, 1990, 80, 817-825.	3.6	86
82	Molecular analysis of the phytochrome deficiency in an aurea mutant of tomato. Molecular Genetics and Genomics, 1988, 213, 9-14.	2.4	85
83	New Arabidopsis Recombinant Inbred Line Populations Genotyped Using SNPWave and Their Use for Mapping Flowering-Time Quantitative Trait Loci. Genetics, 2006, 172, 1867-1876.	2.9	85
84	The aurea mutant of tomato is deficient in spectrophotometrically and immunochemically detectable phytochrome. Plant Molecular Biology, 1987, 9, 97-107.	3.9	82
85	The root-knot nematode resistance gene (Mi) in tomato: construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes Plant Journal, 1992, 2, 971-982.	5.7	82
86	Molecular, genetic and evolutionary analysis of a paracentric inversion in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 159-178.	5.7	81
87	<i>Arabidopsis</i> semidwarfs evolved from independent mutations in <i>GA20ox1</i> , ortholog to green revolution dwarf alleles in rice and barley. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15818-15823.	7.1	79
88	From phenotypic to molecular polymorphisms involved in naturally occurring variation of plant development. International Journal of Developmental Biology, 2005, 49, 717-732.	0.6	78
89	Breeding of a tomato genotype readily accessible to genetic manipulation. Plant Science, 1986, 45, 201-208.	3.6	76
90	Cell Division Activity during Apical Hook Development. Plant Physiology, 2001, 125, 219-226.	4.8	75

#	Article	IF	CITATIONS
91	A strong effect of growth medium and organ type on the identification of QTLs for phytate and mineral concentrations in three Arabidopsis thaliana RIL populations. Journal of Experimental Botany, 2009, 60, 1409-1425.	4.8	75
92	Community standards for Arabidopsis genetics. Plant Journal, 1997, 12, 247-253.	5.7	74
93	The Role of Cryptochrome 2 in Flowering in Arabidopsis. Plant Physiology, 2003, 133, 1504-1516.	4.8	71
94	Quantitative trait loci for glucosinolate accumulation in <i>Brassica rapa</i> leaves. New Phytologist, 2008, 179, 1017-1032.	7.3	71
95	Characterization of green seed, an Enhancer of abi3-1 in Arabidopsis That Affects Seed Longevity. Plant Physiology, 2003, 132, 1077-1084.	4.8	70
96	Quantitative genetics in the age of omics. Current Opinion in Plant Biology, 2008, 11, 123-128.	7.1	69
97	Importance of the B2 domain of the Arabidopsis ABI3 protein for Em and 2S albumin gene regulation. Plant Molecular Biology, 1999, 40, 1045-1054.	3.9	68
98	Cenetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18834-18841.	7.1	66
99	PHOTOMORPHOGENETIC MUTANTS OF HIGHER PLANTS*. Photochemistry and Photobiology, 1988, 48, 833-841.	2.5	65
100	Photophysiology and Phytochrome Content of Long-Hypocotyl Mutant and Wild-Type Cucumber Seedlings. Plant Physiology, 1988, 87, 264-268.	4.8	65
101	Properties of proteins and the glassy matrix in maturation-defective mutant seeds ofArabidopsis thaliana. Plant Journal, 1998, 16, 133-143.	5.7	65
102	Natural modifiers of seed longevity in the Arabidopsis mutants <i>abscisic acid insensitive3â€5</i> (<i>abi3â€5</i>) and <i>leafy cotyledon1â€3</i> (<i>lec1â€3</i>). New Phytologist, 2009, 184, 898-908.	7.3	65
103	Cytogenetic tools for Arabidopsis thaliana. Chromosome Research, 2003, 11, 183-194.	2.2	64
104	Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant and Soil, 2008, 310, 25-40.	3.7	62
105	Quantitative trait loci and candidate genes underlying genotype by environment interaction in the response of <scp><i>A</i></scp> <i>rabidopsis thaliana</i> to drought. Plant, Cell and Environment, 2015, 38, 585-599.	5.7	62
106	Six-Rowed Spike3 (VRS3) Is a Histone Demethylase That Controls Lateral Spikelet Development in Barley. Plant Physiology, 2017, 174, 2397-2408.	4.8	62
107	Tomato chromosome 6: effect of alien chromosomal segments on recombinant frequencies. Genome, 1996, 39, 485-491.	2.0	60
108	PHOTOCONTROL OF ANTHOCYANIN SYNTHESIS IN TOMATO SEEDLINGS: A GENETIC APPROACH*. Photochemistry and Photobiology, 1989, 50, 107-111.	2.5	57

#	Article	IF	CITATIONS
109	Characterization of mutants with reduced seed dormancy â€ ⁻ at two novel rdo loci and a further characterization of rdo1 and rdo2 in Arabidopsis. Physiologia Plantarum, 2002, 115, 604-612.	5.2	55
110	Analysis of a Plant Complex Resistance Gene Locus Underlying Immune-Related Hybrid Incompatibility and Its Occurrence in Nature. PLoS Genetics, 2014, 10, e1004848.	3.5	54
111	NLR locus-mediated trade-off between abiotic and biotic stress adaptation in Arabidopsis. Nature Plants, 2017, 3, 17072.	9.3	53
112	Genetic analysis identifies quantitative trait loci controlling rosette mineral concentrations in <i>Arabidopsis thaliana</i> under drought. New Phytologist, 2009, 184, 180-192.	7.3	51
113	The Footprint of Polygenic Adaptation on Stress-Responsive <i>Cis</i> -Regulatory Divergence in the <i>Arabidopsis Genus</i> . Molecular Biology and Evolution, 2016, 33, 2088-2101.	8.9	50
114	Changing Paradigms in Plant Breeding: Fig. 1 Plant Physiology, 2001, 125, 156-159.	4.8	48
115	Mutations in <i>EID1</i> and <i>LNK2</i> caused light-conditional clock deceleration during tomato domestication. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7135-7140.	7.1	48
116	Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of <i>Brassica rapa</i> . Plant, Cell and Environment, 2008, 31, 887-900.	5.7	46
117	Epistatic Natural Allelic Variation Reveals a Function of AGAMOUS-LIKE6 in Axillary Bud Formation in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2364-2379.	6.6	46
118	Fine mapping of a major QTL for awn length in barley using a multiparent mapping population. Theoretical and Applied Genetics, 2017, 130, 269-281.	3.6	46
119	Variations in constitutive and inducible UV-B tolerance; dissecting photosystem II protection in Arabidopsis thaliana accessions. Physiologia Plantarum, 2010, 138, 22-34.	5.2	45
120	Mutations in Barley Row Type Genes Have Pleiotropic Effects on Shoot Branching. PLoS ONE, 2015, 10, e0140246.	2.5	45
121	The effect of daylength on the transition to flowering in phytochrome-deficient, late-flowering and double mutants of Arabidopsis thaliana. Physiologia Plantarum, 1995, 95, 260-266.	5.2	44
122	Multiple loci and genetic interactions involving flowering time genes regulate stem branching among natural variants of Arabidopsis. New Phytologist, 2013, 199, 843-857.	7.3	44
123	Genetic analysis. , 1992, , 83-99.		44
124	Tomato: a crop species amenable to improvement by cellular and molecular methods. Euphytica, 1989, 42, 1-23.	1.2	43
125	Analysis of phytochrome-deficient yellow-green-2 and aurea mutants of tomato. Plant Journal, 1996, 9, 173-182.	5.7	43
126	Natural variation for anthocyanin accumulation under highâ€light and lowâ€temperature stress is attributable to the <i><scp>ENHANCER OF AG</scp>â€4 2</i> (<i><scp>HUA</scp>2</i>) locus in combination with <i><scp>PRODUCTION OF ANTHOCYANIN PIGMENT</scp>1</i> (<i><scp>PAP</scp>1</i>) and <i><scp>PAP</scp>2</i> . New Phytologist, 2015, 206, 422-435.	7.3	43

#	Article	IF	CITATIONS
127	The genetic architecture of freezing tolerance varies across the range of <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2016, 39, 2570-2579.	5.7	41
128	Photomorphogenic mutants of higher plants. , 1994, , 601-628.		41
129	Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nature Plants, 2020, 6, 13-21.	9.3	40
130	Tomato protoplast DNA transformation: physical linkage and recombination of exogenous DNA sequences. Plant Molecular Biology, 1987, 8, 383-394.	3.9	39
131	The ELONGATED gene of Arabidopsis acts independently of light and gibberellins in the control of elongation growth. Plant Journal, 1996, 9, 305-312.	5.7	38
132	Altered photosynthetic performance of a natural Arabidopsis accession is associated with atrazine resistance. Journal of Experimental Botany, 2005, 56, 1625-1634.	4.8	38
133	Madeiran Arabidopsis thaliana Reveals Ancient Long-Range Colonization and Clarifies Demography in Eurasia. Molecular Biology and Evolution, 2018, 35, 564-574.	8.9	38
134	phenoVein - A tool for leaf vein segmentation and analysis. Plant Physiology, 2015, 169, pp.00974.2015.	4.8	37
135	Relation among plant growth, carbohydrates and flowering time in the <i>Arabidopsis</i> Landsberg <i>erecta</i> â€f×â€fKondara recombinant inbred line population. Plant, Cell and Environment, 2010, 33, 1369-1382.	5.7	35
136	A multi-marker association method for genome-wide association studies without the need for population structure correction. Nature Communications, 2016, 7, 13299.	12.8	35
137	Somatic hybridization as a tool for tomato breeding. Euphytica, 1994, 79, 265-277.	1.2	34
138	Genotype–environment interactions affecting preflowering physiological and morphological traits of <i>Brassica rapa</i> grown in two watering regimes. Journal of Experimental Botany, 2014, 65, 697-708.	4.8	34
139	QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity, 1997, 79, 190-200.	2.6	31
140	Characterization of natural variation for zinc, iron and manganese accumulation and zinc exposure response in Brassica rapa L. Plant and Soil, 2007, 291, 167-180.	3.7	31
141	Histochemical Analysis Reveals Organ-Specific Quantitative Trait Loci for Enzyme Activities in Arabidopsis. Plant Physiology, 2004, 134, 237-245.	4.8	29
142	Conserved histidine of metal transporter At <scp>NRAMP</scp> 1 is crucial for optimal plant growth under manganese deficiency at chilling temperatures. New Phytologist, 2014, 202, 1173-1183.	7.3	29
143	Cenetic analysis of morphological traits in a new, versatile, rapid-cycling Brassica rapa recombinant inbred line population. Frontiers in Plant Science, 2012, 3, 183.	3.6	28
144	Genetic and molecular organization of the short arm and pericentromeric region of tomato chromsome 6. Euphytica, 1994, 79, 169-174.	1.2	27

#	Article	IF	CITATIONS
145	A mixed model QTL analysis for a complex cross population consisting of a half diallel of two-way hybrids in Arabidopsis thaliana: analysis of simulated data. Euphytica, 2008, 161, 107-114.	1.2	23
146	Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana, a long-day plant. Physiologia Plantarum, 1991, 83, 209-215.	5.2	23
147	Phenotype of <i>Arabidopsis thaliana</i> semi-dwarfs with deep roots and high growth rates under water-limiting conditions is independent of the <i>GA5</i> loss-of-function alleles. Annals of Botany, 2015, 116, 321-331.	2.9	22
148	Plants regenerated from auxin-auxotrophic variants are inviable. Molecular Genetics and Genomics, 1988, 215, 58-64.	2.4	20
149	Genetic Aspects of Seed Dormancy. , 0, , 113-132.		20
150	QTL Analysis. , 2006, 323, 79-100.		19
151	Genetic variation in flowering time inArabidopsis thaliana. Seminars in Cell and Developmental Biology, 1996, 7, 381-389.	5.0	18
152	A comparison of population types used for QTL mapping in <i>Arabidopsis thaliana</i> . Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 185-188.	0.8	17
153	Isolation and characterization of nitrate reductase-deficient mutants in tomato (Lycopersicon) Tj ETQq1 1	0.784314 rgBT / 2.4	Oyerlock 10
154	Analysis of nuclear and organellar DNA of somatic hybrid calli and plants between Lycopersicon spp. and Nicotiana spp Molecular Genetics and Genomics, 1993, 241-241, 707-718.	2.4	14
155	Variation in Seed Dormancy Quantitative Trait Loci in Arabidopsis thaliana Originating from One Site. PLoS ONE, 2011, 6, e20886.	2.5	14
156	Quantitative trait loci controlling leaf venation in <i>Arabidopsis</i> . Plant, Cell and Environment, 2017, 40, 1429-1441.	5.7	11
157	Genes for seed longevity in barley identified by genomic analysis on near isogenic lines. Plant, Cell and Environment, 2018, 41, 1895-1911.	5.7	11
158	The Evolutionary Dynamics of Genetic Incompatibilities Introduced by Duplicated Genes in <i>Arabidopsis thaliana</i> . Molecular Biology and Evolution, 2021, 38, 1225-1240.	8.9	11
159	The cause and consequences of natural variation: the genome era takes off!. Current Opinion in Plant Biology, 2008, 11, 99-102.	7.1	9
160	QTL and candidate genes associated with leaf anion concentrations in response to phosphate supply in Arabidopsis thaliana. BMC Plant Biology, 2019, 19, 410.	3.6	9
161	The TRANSPARENT TESTA12 Gene of Arabidopsis Encodes a Multidrug Secondary Transporter-Like Protein Required for Flavonoid Sequestration in Vacuoles of the Seed Coat Endothelium. Plant Cell, 2001, 13, 853.	6.6	8
162	Use of leaky nitrate reductase-deficient mutants of tomato (Lycopersicon esculentum Mill.) for selection of somatic hybrid cell lines with wild type potato (Solanum tuberosum L.). Plant Cell, Tissue and Organ Culture, 1992, 31, 151-154.	2.3	7

#	Article	IF	CITATIONS
163	Genetic Analysis. , 2006, 323, 65-78.		7
164	Signals of speciation within Arabidopsis thaliana in comparison with its relatives. Current Opinion in Plant Biology, 2012, 15, 205-211.	7.1	7
165	Natural Variation in Arabidopsis thaliana. , 2011, , 123-151.		6
166	Asymmetric fusion between protoplasts of tomato (Lycopersicon esculentum Mill.) and gamma-irradiated protoplasts of potato (Solanum tuberosum L.): the effects of gamma irradiation. Molecular Genetics and Genomics, 1994, 242, 313-320.	2.4	5
167	FLC and SVP Are Key Regulators of Flowering Time in the Biennial/Perennial Species Noccaea caerulescens. Frontiers in Plant Science, 2020, 11, 582577.	3.6	5
168	Optimization of Direct Gene Transfer in Tomato. Current Plant Science and Biotechnology in Agriculture, 1988, , 357-358.	0.0	4
169	A Central Role for Genetics in Plant Biology. Annual Review of Plant Biology, 2021, 72, 1-16.	18.7	3
170	The effect of daylength on the transition to flowering in phytochrome-deficient, late-flowering and double mutants of Arabidopsis thaliana. Physiologia Plantarum, 1995, 95, 260-266.	5.2	3
171	Identification and Characterization of Quantitative Trait Loci that Control seed Dormancy in Arabidopsis. Methods in Molecular Biology, 2011, 773, 165-184.	0.9	2
172	An integrated genetic/RFLP map of the Arabidopsis thaliana genome. Plant Journal, 1993, 3, 745-754.	5.7	2
173	Conserved Mechanisms of Dormancy and Germination as Targets for Manipulation of Agricultural Problems. , 2006, , 11-32.		2
174	Spotlight on phytochrome nomenclature. Plant Molecular Biology Reporter, 1994, 12, S50-S56.	1.8	0
175	My favourite flowering image. Journal of Experimental Botany, 2013, 64, 5801-5803.	4.8	0
176	Interview with Maarten Koornneef. Trends in Plant Science, 2015, 20, 135-136.	8.8	0