Maxence Lailliau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6108176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and kinetic modeling study of n-pentane oxidation at 10 atm, Detection of complex low-temperature products by Q-Exactive Orbitrap. Combustion and Flame, 2022, 235, 111723.	5.2	9
2	Experimental study and numerical validation of oxy-ammonia combustion at elevated temperatures and pressures. Combustion and Flame, 2022, 236, 111819.	5.2	23
3	Gasoline Surrogate Oxidation in a Motored Engine, a JSR, and an RCM: Characterization of Cool-Flame Products by High-Resolution Mass Spectrometry. Energy & Fuels, 2022, 36, 3893-3908.	5.1	5
4	Revisiting low temperature oxidation chemistry of n-heptane. Combustion and Flame, 2022, 242, 112177.	5.2	15
5	A pyrolysis study on C4–C8 symmetric ethers. Proceedings of the Combustion Institute, 2021, 38, 329-336.	3.9	10
6	Oxidation of di-n-propyl ether: Characterization of low-temperature products. Proceedings of the Combustion Institute, 2021, 38, 337-344.	3.9	22
7	Oxidation of pentan-2-ol – part II: Experimental and modeling study. Proceedings of the Combustion Institute, 2021, 38, 833-841.	3.9	4
8	Oxidation of pentan-2-ol $\hat{a} \in$ Part I: Theoretical investigation on the decomposition and isomerization reactions of pentan-2-ol radicals. Proceedings of the Combustion Institute, 2021, 38, 823-832.	3.9	7
9	Experimental and numerical studies of the diluent influence (N2, Ar, He, Xe) on stable premixed methane flames in micro-combustion. Proceedings of the Combustion Institute, 2021, 38, 6753-6761.	3.9	11
10	Experimental characterization of n-heptane low-temperature oxidation products including keto-hydroperoxides and highly oxygenated organic molecules (HOMs). Combustion and Flame, 2021, 224, 83-93.	5.2	22
11	An experimental and kinetic modeling study on the oxidation of 1,3-dioxolane. Proceedings of the Combustion Institute, 2021, 38, 543-553.	3.9	28
12	On the similarities and differences between the products of oxidation of hydrocarbons under simulated atmospheric conditions and cool flames. Atmospheric Chemistry and Physics, 2021, 21, 7845-7862.	4.9	10
13	Polar Aromatic Compounds in Soot from Premixed Flames of Kerosene, Synthetic Paraffinic Kerosene, and Kerosene–Synthetic Biofuels. Energy & Fuels, 2021, 35, 11427-11444.	5.1	2
14	Oxidation of C ₅ esters: Influence of the position of the ester function. International Journal of Chemical Kinetics, 2021, 53, 1124-1132.	1.6	4
15	Low-temperature oxidation of a gasoline surrogate: Experimental investigation in JSR and RCM using high-resolution mass spectrometry. Combustion and Flame, 2021, 228, 128-141.	5.2	7
16	Oxidation of diethyl ether: Extensive characterization of products formed at low temperature using high resolution mass spectrometry. Combustion and Flame, 2021, 228, 340-350.	5.2	12
17	Experimental and kinetic modeling study of n-hexane oxidation. Detection of complex low-temperature products using high-resolution mass spectrometry. Combustion and Flame, 2021, 233, 111581.	5.2	12
18	Experimental Characterization of Tetrahydrofuran Low-Temperature Oxidation Products Including Ketohydroperoxides and Highly Oxygenated Molecules. Energy & amp; Fuels, 2021, 35, 7242-7252.	5.1	13

#	Article	IF	CITATIONS
19	Towards a Comprehensive Characterization of the Low-Temperature Autoxidation of Di-n-Butyl Ether. Molecules, 2021, 26, 7174.	3.8	6
20	A high pressure oxidation study of di-n-propyl ether. Fuel, 2020, 263, 116554.	6.4	14
21	Oxidation of di-n-butyl ether: Experimental characterization of low-temperature products in JSR and RCM. Combustion and Flame, 2020, 222, 133-144.	5.2	25
22	Methyl-3-hexenoate combustion chemistry: Experimental study and numerical kinetic simulation. Combustion and Flame, 2020, 222, 170-180.	5.2	11
23	Kinetics of propyl acetate oxidation: Experiments in a jet-stirred reactor, ab initio calculations, and rate constant determination. Proceedings of the Combustion Institute, 2019, 37, 429-436.	3.9	15
24	An experimental and modeling study of the oxidation of 3-pentanol at high pressure. Proceedings of the Combustion Institute, 2019, 37, 477-484.	3.9	8
25	Insights into the oxidation kinetics of a cetane improver – 1,2-dimethoxyethane (1,2-DME) with experimental and modeling methods. Proceedings of the Combustion Institute, 2019, 37, 555-564.	3.9	12
26	Kinetics of oxidation of levulinic biofuels in a jet-stirred reactor: Methyl levulinate. Proceedings of the Combustion Institute, 2019, 37, 381-388.	3.9	5
27	Pyrolysis of butane-2,3‑dione from low to high pressures: Implications for methyl-related growth chemistry. Combustion and Flame, 2019, 200, 69-81.	5.2	13
28	More insight into cyclohexanone oxidation: Jet-stirred reactor experiments and kinetic modeling. Fuel, 2018, 220, 908-915.	6.4	4
29	An experimental chemical kinetic study of the oxidation of diethyl ether in a jet-stirred reactor and comprehensive modeling. Combustion and Flame, 2018, 193, 453-462.	5.2	43
30	Pulsating combustion of ethylene in micro-channels with controlled temperature gradient. Combustion Science and Technology, 2018, , 1-11.	2.3	2
31	Experimental and modeling studies of a biofuel surrogate compound: laminar burning velocities and jet-stirred reactor measurements of anisole. Combustion and Flame, 2018, 189, 325-336.	5.2	49
32	Exploration of the oxidation chemistry of dimethoxymethane: Jet-stirred reactor experiments and kinetic modeling. Combustion and Flame, 2018, 193, 491-501.	5.2	50
33	Experimental and Modeling Study of the Oxidation of Two Branched Aldehydes in a Jet-Stirred Reactor: 2-Methylbutanal and 3-Methylbutanal. Energy & Fuels, 2017, 31, 3206-3218.	5.1	4
34	A Chemical Kinetic Investigation on Butyl Formate Oxidation: <i>Ab Initio</i> Calculations and Experiments in a Jet-Stirred Reactor. Energy & amp; Fuels, 2017, 31, 6194-6205.	5.1	7
35	Screening Method for Fuels in Homogeneous Charge Compression Ignition Engines: Application to Valeric Biofuels. Energy & amp; Fuels, 2017, 31, 607-614.	5.1	22
36	A chemical kinetic study of the oxidation of dibutyl-ether in a jet-stirred reactor. Combustion and Flame, 2017, 185, 4-15.	5.2	58

#	Article	IF	CITATIONS
37	Burning velocities and jet-stirred reactor oxidation of diethyl carbonate. Proceedings of the Combustion Institute, 2017, 36, 553-560.	3.9	20
38	Experimental and Detailed Kinetic Modeling Study of Cyclopentanone Oxidation in a Jet-Stirred Reactor at 1 and 10 atm. Energy & Fuels, 2017, 31, 2144-2155.	5.1	22
39	An experimental study in a jet-stirred reactor and a comprehensive kinetic mechanism for the oxidation of methyl ethyl ketone. Proceedings of the Combustion Institute, 2017, 36, 459-467.	3.9	40
40	Experimental and Kinetic Modeling of the Oxidation of Synthetic Jet Fuels and Surrogates. Combustion Science and Technology, 2016, 188, 1705-1718.	2.3	10
41	Combustion in micro-channels with a controlled temperature gradient. Experimental Thermal and Fluid Science, 2016, 73, 79-86.	2.7	59
42	Oscillating flames in micro-combustion. Combustion and Flame, 2016, 167, 392-394.	5.2	42
43	An Experimental and Kinetic Modeling Study of Premixed Laminar Flames of Methyl Pentanoate and Methyl Hexanoate. Zeitschrift Fur Physikalische Chemie, 2015, 229, 759-780.	2.8	29
44	Identification and Quantification of Aromatic Hydrocarbons Adsorbed on Soot from Premixed Flames of Kerosene, Synthetic Kerosene, and Kerosene–Synthetic Biofuels. Energy & Fuels, 2015, 29, 6556-6564.	5.1	9
45	The Combustion of Synthetic Jet Fuels (Gas to Liquid and Coal to Liquid) and Multi-Component Surrogates: Experimental and Modeling Study. , 2015, , .		4
46	Experimental and Modeling Study of the Oxidation of 1-Butene and <i>cis</i> -2-Butene in a Jet-Stirred Reactor and a Combustion Vessel. Energy & Fuels, 2015, 29, 1107-1118.	5.1	37
47	Quantification of HO2 and other products of dimethyl ether oxidation (H2O2, H2O, and CH2O) in a jet-stirred reactor at elevated temperatures by low-pressure sampling and continuous-wave cavity ring-down spectroscopy. Fuel, 2015, 158, 248-252.	6.4	23
48	Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion. Applied Energy, 2015, 160, 566-580.	10.1	60
49	Combustion and Emissions Characteristics of Valeric Biofuels in a Compression Ignition Engine. Journal of Energy Engineering - ASCE, 2014, 140, .	1.9	27
50	Combustion of a Gas-to-Liquid–Based Alternative Jet Fuel: Experimental and Detailed Kinetic Modeling. Combustion Science and Technology, 2014, 186, 1275-1283.	2.3	8
51	Quantitative Measurements of HO(sub>2 and Other Products of <1>n 1 -Butane Oxidation (H ₂ O(sub>2, H ₂ O, CH ₂ O, and) Tj ETQq1 1 0.784314 rgBT /Overl with Sampling Nozzle and Cavity Ring-Down Spectroscopy (cw-CRDS). Journal of the American	ock 10 Tf 13.7	50 187 Td (C 27
52	Chemical Society, 2019, 136, 16689-16694. New insights into the peculiar behavior of laminar burning velocities of hydrogen–air flames according to pressure and equivalence ratio. Combustion and Flame, 2014, 161, 2235-2241.	5.2	48
53	Experimental and detailed kinetic model for the oxidation of a Gas to Liquid (GtL) jet fuel. Combustion and Flame, 2014, 161, 835-847.	5.2	111
54	An experimental and modeling study of 2-methyl-1-butanol oxidation in a jet-stirred reactor.	5.2	29

4

#	Article	IF	CITATIONS
55	Experimental Study of the Oxidation of <i>N</i> -Tetradecane in a Jet-Stirred Reactor (JSR) and Detailed Chemical Kinetic Modeling. Combustion Science and Technology, 2014, 186, 594-606.	2.3	9
56	A comprehensive combustion chemistry study of 2,5-dimethylhexane. Combustion and Flame, 2014, 161, 1444-1459.	5.2	88
57	Experimental and kinetic modeling study of trans-methyl-3-hexenoate oxidation in JSR and the role of CC double bond. Combustion and Flame, 2014, 161, 818-825.	5.2	38
58	Low temperature oxidation of n-hexane in a flow reactor. Fuel, 2014, 126, 282-293.	6.4	25
59	Homogeneous Charge Compression Ignition Combustion of Primary Reference Fuels Influenced by Ozone Addition. Energy & Fuels, 2013, 27, 5495-5505.	5.1	60
60	Experimental Study of Tetralin Oxidation and Kinetic Modeling of Its Pyrolysis and Oxidation. Energy & Fuels, 2013, 27, 1576-1585.	5.1	24
61	A comprehensive experimental and modeling study of iso-pentanol combustion. Combustion and Flame, 2013, 160, 2712-2728.	5.2	95
62	Experimental and modeling study of the oxidation of n- and iso-butanal. Combustion and Flame, 2013, 160, 1609-1626.	5.2	40
63	Experimental and Kinetic Modeling Study of 3-Methylheptane in a Jet-Stirred Reactor. Energy & Fuels, 2012, 26, 4680-4689.	5.1	28
64	Experimental and Modeling Study of the Oxidation Kinetics of <i>n</i> -Undecane and <i>n</i> -Dodecane in a Jet-Stirred Reactor. Energy & Fuels, 2012, 26, 4253-4268.	5.1	70
65	Experimental and Detailed Kinetic Modeling Study of Ethyl Pentanoate (Ethyl Valerate) Oxidation in a Jet Stirred Reactor and Laminar Burning Velocities in a Spherical Combustion Chamber. Energy & Fuels, 2012, 26, 4735-4748.	5.1	55
66	Experimental and modeling investigation of the low-temperature oxidation of n-heptane. Combustion and Flame, 2012, 159, 3455-3471.	5.2	165
67	Laminar Burning Velocities of C ₄ –C ₇ Ethyl Esters in a Spherical Combustion Chamber: Experimental and Detailed Kinetic Modeling. Energy & Fuels, 2012, 26, 6669-6677.	5.1	43
68	Oxidation of a Coal-to-Liquid Synthetic Jet Fuel: Experimental and Chemical Kinetic Modeling Study. Energy & Fuels, 2012, 26, 6070-6079.	5.1	50
69	Experimental and Detailed Kinetic Modeling Study of Isoamyl Alcohol (Isopentanol) Oxidation in a Jet-Stirred Reactor at Elevated Pressure. Energy & Fuels, 2011, 25, 4986-4998.	5.1	76
70	Experimental and Modeling Study of the Kinetics of Oxidation of Simple Biodieselâ^'Biobutanol Surrogates: Methyl Octanoateâ^'Butanol Mixtures. Energy & Fuels, 2010, 24, 3906-3916.	5.1	39
71	Chemical Kinetic Study of the Oxidation of a Biodieselâ `Bioethanol Surrogate Fuel: Methyl Octanoateâ `Ethanol Mixtures. Journal of Physical Chemistry A, 2010, 114, 3896-3908.	2.5	26
72	Detailed Kinetic Mechanism for the Oxidation of Vegetable Oil Methyl Esters: New Evidence from Methyl Heptanoate. Energy & Fuels, 2009, 23, 4254-4268.	5.1	62

#	Article	IF	CITATIONS
73	Experimental and Kinetic Modeling Study of the Oxidation of Methyl Hexanoate. Energy & Fuels, 2008, 22, 1469-1479.	5.1	94
74	High pressure effects on the mutual sensitization of the oxidation of NO and CH4–C2H6 blends. Physical Chemistry Chemical Physics, 2007, 9, 4230.	2.8	71
75	EFFECTS OF AIR CONTAMINATION ON THE COMBUSTION OF HYDROGEN—EFFECT OF NO AND NO2 ADDITION ON HYDROGEN IGNITION AND OXIDATION KINETICS. Combustion Science and Technology, 2006, 178, 1999-2024.	2.3	71
76	Mutual Sensitization of the Oxidation of Nitric Oxide and a Natural Gas Blend in a JSR at Elevated Pressure: Experimental and Detailed Kinetic Modeling Studyâ€. Journal of Physical Chemistry A, 2006, 110, 6608-6616.	2.5	25
77	Hydrogen-enriched natural gas blend oxidation under high-pressure conditions: Experimental and detailed chemical kinetic modeling. International Journal of Hydrogen Energy, 2006, 31, 505-515.	7.1	53
78	Rich methane premixed laminar flames doped with light unsaturated hydrocarbonsI. Allene and propyne. Combustion and Flame, 2006, 146, 620-634.	5.2	32
79	The high-pressure reduction of nitric oxide by a natural gas blend. Combustion and Flame, 2005, 143, 135-137.	5.2	13
80	Experimental and modeling study of the oxidation of 1-pentene at high temperature. International Journal of Chemical Kinetics, 2005, 37, 451-463.	1.6	62
81	EXPERIMENTAL STUDY AND DETAILED KINETIC MODELING OF THE MUTUAL SENSITIZATION OF THE OXIDATION OF NITRIC OXIDE, ETHYLENE, AND ETHANE. Combustion Science and Technology, 2005, 177, 1767-1791.	2.3	47
82	Experimental and modeling study of the oxidation of cyclohexene. International Journal of Chemical Kinetics, 2003, 35, 273-285.	1.6	59
83	Pressure measurements and an analytical model for laser-generated shock waves in solids at low irradiance. Journal of Physics Condensed Matter, 2002, 14, 10793-10797.	1.8	3
84	Low-Temperature Oxidation of Di- <i>n</i> Butyl Ether in a Motored Homogeneous Charge Compression Ignition (HCCI) Engine: Comparison of Characteristic Products with RCM and JSR Speciation by Orbitrap. Energy & Fuels, 0, , .	5.1	1