Adel Alahmadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6108168/publications.pdf

Version: 2024-02-01

46 papers

377 citations

840776 11 h-index 18 g-index

47 all docs

47 docs citations

47 times ranked

209 citing authors

#	Article	IF	CITATIONS
1	Growth functions of lie algebras associated with associative algebras. Journal of Algebra and Its Applications, 2022, 21, .	0.4	1
2	The build-up construction of quasi self-dual codes over a non-unital ring. Journal of Algebra and Its Applications, 2022, 21, .	0.4	6
3	Type IV codes over a non-unital ring. Journal of Algebra and Its Applications, 2022, 21, .	0.4	11
4	New constructions of entanglement-assisted quantum codes. Cryptography and Communications, 2022, 14, 15-37.	1.4	13
5	ON REPUNIT CULLEN NUMBERS. Bulletin of the Australian Mathematical Society, 2022, 106, 264-268.	0.5	0
6	Finite Generation of Lie Derived Powers of Skew Lie Algebras. Algebra Colloquium, 2022, 29, 217-220.	0.2	1
7	Cyber-Security Threats and Side-Channel Attacks for Digital Agriculture. Sensors, 2022, 22, 3520.	3.8	24
8	The build-up construction over a commutative non-unital ring. Designs, Codes, and Cryptography, 2022, 90, 3003-3010.	1.6	3
9	Fibonacci numbers which are concatenations of two repdigits. Quaestiones Mathematicae, 2021, 44, 281-290.	0.6	29
10	Quasi type IV codes over a non-unital ring. Applicable Algebra in Engineering, Communications and Computing, 2021, 32, 217-228.	0.5	14
11	New quantum codes from constacyclic codes over a non-chain ring. Quantum Information Processing, 2021, 20, 1.	2.2	12
12	Embeddings in matrix wreath products of algebras. Journal of Algebra and Its Applications, 2021, 20, .	0.4	1
13	On complementary dual multinegacirculant codes. Cryptography and Communications, 2020, 12, 101-113.	1.4	6
14	Morita equivalence of finitely presented algebras. Proceedings of the American Mathematical Society, 2020, 148, 4577-4579.	0.8	1
15	Invariance and parallel sums. Bulletin of Mathematical Sciences, 2020, 10, 2050001.	0.7	1
16	Type IV codes over a non-local non-unital ring. Proyecciones, 2020, 39, 963-978.	0.3	5
17	Quasi self-dual codes over non-unital rings of order six. Proyecciones, 2020, 39, 1083-1095.	0.3	1
18	Embeddings in Lie algebras of subexponential growth. Communications in Algebra, 2019, 47, 904-906.	0.6	0

#	Article	IF	Citations
19	Covering aspects of the Niemeier lattices. European Journal of Combinatorics, 2019, 80, 102-106.	0.8	o
20	Regular elements determined by generalized inverses. Journal of Algebra and Its Applications, 2019, 18, 1950128.	0.4	6
21	Algebras and semigroups of locally subexponential growth. Journal of Algebra, 2018, 503, 56-66.	0.7	3
22	On two-weight \frac{Z}_{2^k} Z 2 k -codes. Designs, Codes, and Cryptography, 2018, 86, 1201-1209.	1.6	22
23	On self-dual double circulant codes. Designs, Codes, and Cryptography, 2018, 86, 1257-1265.	1.6	23
24	ON THE SUPPORT WEIGHT DISTRIBUTION OF LINEAR CODES OVER THE RING. Bulletin of the Australian Mathematical Society, 2017, 95, 157-163.	0.5	1
25	An analogue of the â,,4-Goethals code in non-primitive length. Journal of Systems Science and Complexity, 2017, 30, 950-966.	2.8	0
26	Centers of Cuntz–Krieger C*-algebras. Journal of Algebra and Its Applications, 2017, 16, 1750091.	0.4	0
27	Multiple Hamilton cycles in bipartite cubic graphs: An algebraic method. Finite Fields and Their Applications, 2017, 44, 18-21.	1.0	0
28	Centers of Leavitt path algebras and their completions. Journal of Algebra and Its Applications, 2017, 16, 1750090.	0.4	1
29	Saudi-KAU Coupled Global Climate Model: Description and Performance. Earth Systems and Environment, 2017, 1, 1.	6.2	33
30	Hypercube emulation of interconnection networks topologies. Mathematical Methods in the Applied Sciences, 2016, 39, 4856-4865.	2.3	3
31	Completions of Leavitt path algebras. Bulletin of Mathematical Sciences, 2016, 6, 145-161.	0.7	2
32	Quasi-permutation singular matrices are products of idempotents. Linear Algebra and Its Applications, 2016, 496, 487-495.	0.9	5
33	A Characterization of Generalized Derivations on Prime Rings. Communications in Algebra, 2016, 44, 3201-3210.	0.6	7
34	Isodual cyclic codes over finite fields of odd characteristic. Discrete Mathematics, 2016, 339, 344-353.	0.7	5
35	On finitely presented algebras. Journal of Algebra and Its Applications, 2016, 15, 1650153.	0.4	2
36	On the lifted Zetterberg code. Designs, Codes, and Cryptography, 2016, 80, 561-576.	1.6	10

#	Article	IF	CITATIONS
37	Skew Cyclic Codes over $\frac{F}_{q}+v^{2}+v^$	0.3	7
38	Direct products of modules whose endomorphism rings have at most two maximal ideals. Journal of Algebra, 2015, 435, 204-222.	0.7	2
39	Wreath products by a leavitt path algebra and affinizations. International Journal of Algebra and Computation, 2014, 24, 707-714.	0.5	6
40	Decomposition of singular matrices into idempotents. Linear and Multilinear Algebra, 2014, 62, 13-27.	1.0	13
41	Pseudo-injective group algebra. Journal of Algebra and Its Applications, 2014, 13, 1250175.	0.4	1
42	ALMOST INJECTIVE MODULES â€" A BRIEF SURVEY. Journal of Algebra and Its Applications, 2014, 13, 1350164.	0.4	4
43	LEAVITT PATH ALGEBRAS OF FINITE GELFAND–KIRILLOV DIMENSION. Journal of Algebra and Its Applications, 2012, 11, 1250225.	0.4	38
44	On semigroups and semirings of nonnegative matrices. Linear and Multilinear Algebra, 2012, 60, 595-598.	1.0	1
45	ADS modules. Journal of Algebra, 2012, 352, 215-222.	0.7	17
46	POOR MODULES: THE OPPOSITE OF INJECTIVITY. Glasgow Mathematical Journal, 2010, 52, 7-17.	0.3	36