Panagiotis Tsiakaras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6108063/publications.pdf

Version: 2024-02-01

217 papers

13,677 citations

63 h-index 26548 107 g-index

222 all docs 222 docs citations

times ranked

222

10863 citing authors

#	Article	IF	CITATIONS
1	Shell-thickness-dependent Pd@PtNi core–shell nanosheets for efficient oxygen reduction reaction. Chemical Engineering Journal, 2022, 427, 131565.	6.6	38
2	Enhanced oxygen reduction and methanol oxidation reaction over self-assembled Pt-M (MÂ=ÂCo, Ni) nanoflowers. Journal of Colloid and Interface Science, 2022, 607, 1411-1423.	5.0	26
3	Novel fluorine-doped cobalt molybdate nanosheets with enriched oxygen-vacancies for improved oxygen evolution reaction activity. Applied Catalysis B: Environmental, 2022, 303, 120871.	10.8	69
4	Ternary Mo ₂ NiB ₂ as a Superior Bifunctional Electrocatalyst for Overall Water Splitting. Small, 2022, 18, e2104303.	5.2	70
5	Single-atom catalysis for zinc-air/O2 batteries, water electrolyzers and fuel cells applications. Energy Storage Materials, 2022, 45, 504-540.	9.5	39
6	Understanding the selectivity trend of water and sulfate (SO42â^') oxidation on metal oxides: On-site synthesis of persulfate, H2O2 for wastewater treatment. Chemical Engineering Journal, 2022, 431, 134332.	6.6	12
7	Oxygen Vacancy and Core–Shell Heterojunction Engineering of Anemoneâ€Like CoP@CoOOH Bifunctional Electrocatalyst for Efficient Overall Water Splitting. Small, 2022, 18, e2106012.	5.2	82
8	Cost Effective Synthesis of Graphene Nanomaterials for Non-Enzymatic Electrochemical Sensors for Glucose: A Comprehensive Review. Sensors, 2022, 22, 355.	2.1	26
9	Selective electro-oxidation of dopamine on Co or Fe supported onto N-doped ketjenblack. Electrochimica Acta, 2022, 409, 139943.	2.6	9
10	Understanding the Surface Reconstruction on Ternary W <i>_x</i> CoB <i>_x</i> for Water Oxidation and Zinc–Air Battery Applications. Small, 2022, 18, e2201067.	5.2	16
11	Fundamentals and Principles of Solid-State Electrochemical Sensors for High Temperature Gas Detection. Catalysts, 2022, 12, 1.	1.6	19
12	Efficient carbon dioxide electroreduction over rationally designed heterogeneous Ag2S-Au nanocomposites. Journal of Colloid and Interface Science, 2022, 623, 1172-1180.	5.0	9
13	ZIFâ€Mg(OH) < sub > 2 < / sub > Dual Template Assisted Selfâ€Confinement of Small PtCo NPs as Promising Oxygen Reduction Reaction in PEM Fuel Cell. Advanced Energy Materials, 2022, 12, .	10.2	24
14	Preparation and characterization of novel Niln2S4/UiO-66 photocatalysts for the efficient degradation of antibiotics in water. Chemosphere, 2022, , 135699.	4.2	0
15	Highly stable cathodes for proton exchange membrane fuel cells: Novel carbon supported Au@PtNiAu concave octahedral core-shell nanocatalyst. Journal of Colloid and Interface Science, 2022, 626, 1040-1050.	5.0	6
16	A novel efficient electrocatalyst for oxygen reduction and oxygen evolution reaction in Li-O2 batteries: Co/CoSe embedded N, Se co-doped carbon. Applied Catalysis B: Environmental, 2022, 317, 121698.	10.8	24
17	CO tolerance and durability study of PtMe(MeÂ=Âlr or Pd) electrocatalysts for H2-PEMFC application. International Journal of Hydrogen Energy, 2021, 46, 13865-13877.	3.8	16
18	Electrocatalytic reduction of nitrogen on FeAg/Si for ammonia synthesis: A simple strategy for continuous regulation of faradaic efficiency by controlling H+ ions transfer rate. Applied Catalysis B: Environmental, 2021, 283, 119606.	10.8	21

#	Article	IF	CITATIONS
19	Highly stable Pt-Co nanodendrite in nanoframe with Pt skin structured catalyst for oxygen reduction electrocatalysis. Applied Catalysis B: Environmental, 2021, 281, 119460.	10.8	105
20	Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions. Chinese Journal of Catalysis, 2021, 42, 648-657.	6.9	48
21	Novel Mn-/Co-N <i></i> Moieties Captured in N-Doped Carbon Nanotubes for Enhanced Oxygen Reduction Activity and Stability in Acidic and Alkaline Media. ACS Applied Materials & Camp; Interfaces, 2021, 13, 23191-23200.	4.0	57
22	N, S Codoped Carbon Matrixâ€Encapsulated Co ₉ S ₈ Nanoparticles as a Highly Efficient and Durable Bifunctional Oxygen Redox Electrocatalyst for Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2021, 11, 2101249.	10.2	102
23	Emerging materials for the electrochemical detection of COVID-19. Journal of Electroanalytical Chemistry, 2021, 893, 115289.	1.9	40
24	Carbon Monoxide Tolerant Pt-Based Electrocatalysts for H2-PEMFC Applications: Current Progress and Challenges. Catalysts, 2021, 11, 1127.	1.6	37
25	Enhanced electrocatalytic overall water splitting over novel one-pot synthesized Ru–MoO3- and Fe3O4–NiFe layered double hydroxide on Ni foam. Renewable Energy, 2021, 177, 1346-1355.	4.3	26
26	Single noble metal atoms doped 2D materials for catalysis. Applied Catalysis B: Environmental, 2021, 297, 120389.	10.8	49
27	Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance. Applied Catalysis B: Environmental, 2021, 298, 120529.	10.8	118
28	Atomic Scale Mechanisms of Multimode Oxide Growth on Nickel–Chromium Alloy: Direct ⟨i⟩In Situ⟨ i⟩ Observation of the Initial Oxide Nucleation and Growth. ACS Applied Materials & Direct ⟨i⟩Interfaces, 2021, 13, 1903-1913.	4.0	8
29	Nanostructure Engineering of Metal–Organic Derived Frameworks: Cobalt Phosphide Embedded in Carbon Nanotubes as an Efficient ORR Catalyst. Molecules, 2021, 26, 6672.	1.7	22
30	Efficient overall water splitting over Mn doped Ni2P microflowers grown on nickel foam. Catalysis Today, 2020, 355, 815-821.	2.2	33
31	Electronic modulation of cobalt phosphide nanosheet arrays via copper doping for highly efficient neutral-pH overall water splitting. Applied Catalysis B: Environmental, 2020, 265, 118555.	10.8	172
32	Recent advances on oxygen reduction electrocatalysis: Correlating the characteristic properties of metal organic frameworks and the derived nanomaterials. Applied Catalysis B: Environmental, 2020, 268, 118570.	10.8	147
33	Iron oxide@graphitic carbon core-shell nanoparticles embedded in ordered mesoporous N-doped carbon matrix as an efficient cathode catalyst for PEMFC. Applied Catalysis B: Environmental, 2020, 264, 118468.	10.8	59
34	Electrocatalytic production of hydrogen over highly efficient ultrathin carbon encapsulated S, P co-existence copper nanorods composite. Renewable Energy, 2020, 151, 1278-1285.	4.3	10
35	Novel Bifunctional V ₂ O ₃ Nanosheets Coupled with N-Doped-Carbon Encapsulated Ni Heterostructure for Enhanced Electrocatalytic Oxidation of Urea-Rich Wastewater. ACS Applied Materials & Diteraces, 2020, 12, 38061-38069.	4.0	47
36	Highly efficient Li-O2 batteries based on self-standing NiFeP@NC/BC cathode derived from biochar supported Prussian blue analogues. Journal of Electroanalytical Chemistry, 2020, 867, 114124.	1.9	12

#	Article	IF	CITATIONS
37	Heterojunction architecture of pTTh nanoflowers with CuOx nanoparticles hybridized for efficient photoelectrocatalytic degradation of organic pollutants. Applied Catalysis B: Environmental, 2020, 277, 119249.	10.8	24
38	A green approach for enhancing the electrocatalytic activity and stability of NiFe2O4/CB nanospheres towards hydrogen production. Renewable Energy, 2020, 154, 704-714.	4.3	25
39	Combined amperometric-potentiometric oxygen sensor. Sensors and Actuators B: Chemical, 2020, 313, 127999.	4.0	12
40	Electrocatalytic production of ammonia: Biomimetic electrode–electrolyte design for efficient electrocatalytic nitrogen fixation under ambient conditions. Applied Catalysis B: Environmental, 2020, 271, 118919.	10.8	55
41	Enhanced Ultrasonic-Assisted Heterogeneous Fenton Degradation of Organic Pollutants over a New Copper Magnetite (Cu-Fe ₃ O ₄ /Cu/C) Nanohybrid Catalyst. Industrial & Engineering Chemistry Research, 2020, 59, 12431-12440.	1.8	22
42	Design and Synthesis of Highly Performing Bifunctional Ni-NiO-MoNi Hybrid Catalysts for Enhanced Urea Oxidation and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2020, 8, 7174-7181.	3.2	63
43	Sensors based on solid oxide electrolytes. , 2020, , 167-215.		6
44	Molybdenum-modified and vertex-reinforced quaternary hexapod nano-skeletons as efficient electrocatalysts for methanol oxidation and oxygen reduction reaction. Applied Catalysis B: Environmental, 2019, 258, 117974.	10.8	40
45	Excavated and dendritic Pt-Co nanocubes as efficient ethylene glycol and glycerol oxidation electrocatalysts. Applied Catalysis B: Environmental, 2019, 258, 117951.	10.8	48
46	Nitrogen-doped 3D hierarchical ordered mesoporous carbon supported palladium electrocatalyst for the simultaneous detection of ascorbic acid, dopamine, and glucose. lonics, 2019, 25, 6061-6070.	1.2	23
47	Determination of nitrous oxide concentration using a solid-electrolyte amperometric sensor. Sensors and Actuators B: Chemical, 2019, 297, 126750.	4.0	5
48	Copper oxide derived nanostructured self-supporting Cu electrodes for electrochemical reduction of carbon dioxide. Electrochimica Acta, 2019, 328, 135083.	2.6	26
49	Glucose electrooxidation reaction in presence of dopamine and uric acid over ketjenblack carbon supported PdCo electrocatalyst. Journal of Electroanalytical Chemistry, 2019, 855, 113610.	1.9	17
50	Oxygen Reduction Reaction over PtFeM (M = Mo, V, W) Alloy Electrocatalysts: Role of the Compressive Strain Effect on Pt. ACS Sustainable Chemistry and Engineering, 2019, 7 , $16209-16214$.	3.2	19
51	Bifunctional catalysts for overall water splitting: CoNi oxyhydroxide nanosheets electrodeposited on titanium sheets. Electrochimica Acta, 2019, 301, 449-457.	2.6	70
52	Cross-double dumbbell-like Pt–Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Applied Catalysis B: Environmental, 2019, 246, 277-283.	10.8	145
53	Highly performing free standing cathodic electrocatalysts for Li-O2 batteries: CoNiO2 nanoneedle arrays supported on N-doped carbon nanonet. Applied Catalysis A: General, 2019, 574, 114-121.	2.2	21
54	Lithium-sulfur battery cathodes made of porous biochar support CoFe@NC metal nanoparticles derived from Prussian blue analogues. Ionics, 2019, 25, 5297-5304.	1.2	19

#	Article	IF	Citations
55	Bimetallic Niâ€'Co phosphide nanosheets self-supported on nickel foam as high-performance electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2019, 317, 191-198.	2.6	69
56	Enhanced hydrogen evolution activity over microwave-assisted functionalized 3D structured graphene anchoring FeP nanoparticles. Electrochimica Acta, 2019, 317, 242-249.	2.6	20
57	Anion–Cation Double Doped Co ₃ O ₄ Microtube Architecture to Promote High-Valence Co Species Formation for Enhanced Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 11901-11910.	3.2	50
58	Worm-like S-doped RhNi alloys as highly efficient electrocatalysts for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 255, 117737.	10.8	61
59	Facile synthesis of bimetallic Pt-Pd symmetry-broken concave nanocubes and their enhanced activity toward oxygen reduction reaction. Applied Catalysis B: Environmental, 2019, 251, 49-56.	10.8	62
60	Theoretical modeling of the gas humidification effect on the characteristics of proton ceramic fuel cells. Applied Energy, 2019, 242, 1448-1459.	5.1	22
61	A facile route to achieve ultrafine Fe2O3 nanorods anchored on graphene oxide for application in lithium-ion battery. Journal of Power Sources, 2019, 416, 118-124.	4.0	67
62	Highly efficient electrocatalysts for oxygen reduction reaction: Nitrogen-doped PtNiMo ternary alloys. International Journal of Hydrogen Energy, 2019, 44, 6582-6591.	3.8	22
63	P-doped CNTs encapsulated nickel hybrids with flower-like structure as efficient catalysts for hydrogen evolution reaction. Electrochimica Acta, 2019, 298, 142-149.	2.6	41
64	Bimetallicâ^'organic framework-derived hierarchically porous Co-Zn-N-C as efficient catalyst for acidic oxygen reduction reaction. Applied Catalysis B: Environmental, 2019, 244, 120-127.	10.8	140
65	Novel and highly efficient cathodes for Li-O2 batteries: 3D self-standing NiFe@NC-functionalized N-doped carbon nanonet derived from Prussian blue analogues/biomass composites. Applied Catalysis B: Environmental, 2019, 245, 721-732.	10.8	45
66	Interface charges redistribution enhanced monolithic etched copper foam-based Cu2O layer/TiO2 nanodots heterojunction with high hydrogen evolution electrocatalytic activity. Applied Catalysis B: Environmental, 2019, 243, 365-372.	10.8	56
67	Synthesis of nitrogen-doped mesoporous carbon nanosheets for oxygen reduction electrocatalytic activity enhancement in acid and alkaline media. International Journal of Hydrogen Energy, 2019, 44, 4423-4431.	3.8	16
68	A novel NiFe@NC-functionalized N-doped carbon microtubule network derived from biomass as a highly efficient 3D free-standing cathode for Li-CO2 batteries. Applied Catalysis B: Environmental, 2019, 244, 559-567.	10.8	60
69	Effect of isovalent substitution of La3+ in Ca-doped LaNbO4 on the thermal and electrical properties. Ceramics International, 2019, 45, 209-215.	2.3	23
70	Oxygen reduction and hydrogen oxidation reaction on novel carbon supported Pd x Ir y electrocatalysts. International Journal of Hydrogen Energy, 2018, 43, 11766-11777.	3.8	31
71	One-pot synthesized boron-doped RhFe alloy with enhanced catalytic performance for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2018, 230, 58-64.	10.8	112
72	An electrochemical method for the determination of concentration and diffusion coefficient of ammonia‑nitrogen gas mixtures. Journal of Electroanalytical Chemistry, 2018, 808, 133-136.	1.9	12

#	Article	IF	CITATIONS
73	N-Doped Porous Molybdenum Carbide Nanobelts as Efficient Catalysts for Hydrogen Evolution Reaction. Applied Catalysis B: Environmental, 2018, 224, 533-540.	10.8	358
74	Enhancement of oxygen reduction reaction performance: The characteristic role of Fe N coordinations. Electrochimica Acta, 2018, 260, 264-273.	2.6	27
75	In-situ electrosynthesis of hydrogen peroxide and wastewater treatment application: A novel strategy for graphite felt activation. Applied Catalysis B: Environmental, 2018, 237, 392-400.	10.8	148
76	Transport properties of highly dense proton-conducting BaCe0.8–xZrxDy0.2O3–δ materials in low- and high-temperature ranges. Electrochimica Acta, 2018, 284, 551-559.	2.6	27
77	Designing a protonic ceramic fuel cell with novel electrochemically active oxygen electrodes based on doped Nd _{0.5} Ba _{0.5} FeO _{3â^Î} . Dalton Transactions, 2018, 47, 8149-8157.	1.6	35
78	The effect of oxygen and water vapor partial pressures on the total conductivity of BaCe0.7Zr0.1Y0.2O3â€"Î'. lonics, 2017, 23, 795-801.	1.2	19
79	Electrochemical moisture analysis by combining oxygen- and proton-conducting ceramic electrolytes. Electrochemistry Communications, 2017, 76, 55-58.	2.3	14
80	Design and applications of potentiometric sensors based on proton-conducting ceramic materials. A brief review. Sensors and Actuators B: Chemical, 2017, 244, 1004-1015.	4.0	51
81	2D nitrogen-doped hierarchically porous carbon: Key role of low dimensional structure in favoring electrocatalysis and mass transfer for oxygen reduction reaction. Applied Catalysis B: Environmental, 2017, 209, 447-454.	10.8	94
82	Improved ceramic and electrical properties of CaZrO3-based proton-conducting materials prepared by a new convenient combustion synthesis method. Ceramics International, 2017, 43, 7184-7192.	2.3	36
83	Highly effective oxygen reduction reaction electrocatalysis: Nitrogen-doped hierarchically mesoporous carbon derived from interpenetrated nonporous metal-organic frameworks. Applied Catalysis B: Environmental, 2017, 218, 260-266.	10.8	70
84	Active sites and mechanism on nitrogen-doped carbon catalyst for hydrogen evolution reaction. Journal of Catalysis, 2017, 348, 151-159.	3.1	64
85	3D interconnected hierarchically porous N-doped carbon with NH3 activation for efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2017, 210, 57-66.	10.8	131
86	BaCe0.5Zr0.3Y0.2–xYbxO3–δ proton-conducting electrolytes for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2017, 251, 554-561.	2.6	56
87	Grain and grain boundary transport in BaCe0.5Zr0.3Ln0.2O3â^Î^ (Ln – Y or lanthanide) electrolytes attractive for protonic ceramic fuel cells application. Journal of Power Sources, 2017, 366, 161-168.	4.0	45
88	Electrochemical reduction of carbon dioxide at nanostructured SnO2/carbon aerogels: The effect of tin oxide content on the catalytic activity and formate selectivity. Applied Catalysis A: General, 2017, 545, 159-166.	2.2	49
89	Electrochemical Approach for Analyzing Electrolyte Transport Properties and Their Effect on Protonic Ceramic Fuel Cell Performance. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26874-26884.	4.0	42
90	A detailed analysis of thermal and chemical compatibility of cathode materials suitable for BaCe0.8Y0.2O3â^î^î and BaZr0.8Y0.2O3â^î^î proton electrolytes for solid oxide fuel cell application. International Journal of Hydrogen Energy, 2017, 42, 1715-1723.	3.8	53

#	Article	IF	Citations
91	Iron-embedded nitrogen doped carbon frameworks as robust catalyst for oxygen reduction reaction in microbial fuel cells. Applied Catalysis B: Environmental, 2017, 202, 550-556.	10.8	148
92	Proton-Conducting Electrolytes for Solid Oxide Fuel Cell Applications. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2017, , 77-118.	0.3	12
93	Pt/CN-doped electrocatalysts: Superior electrocatalytic activity for methanol oxidation reaction and mechanistic insight into interfacial enhancement. Applied Catalysis B: Environmental, 2017, 203, 541-548.	10.8	153
94	3D Co-N-doped hollow carbon spheres as excellent bifunctional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction. Applied Catalysis B: Environmental, 2017, 217, 477-484.	10.8	212
95	Non-Precious Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media: Latest Achievements on Novel Carbon Materials. Catalysts, 2016, 6, 159.	1.6	49
96	Efficient Pt-free electrocatalyst for oxygen reduction reaction: Highly ordered mesoporous N and S co-doped carbon with saccharin as single-source molecular precursor. Applied Catalysis B: Environmental, 2016, 194, 202-208.	10.8	93
97	PhysicĐ¾-chemical characterization and transport features of proton-conducting Sr-doped LaYO3 electrolyte ceramics. Journal of the European Ceramic Society, 2016, 36, 2795-2800.	2.8	18
98	Recent activity in the development of proton-conducting oxides for high-temperature applications. RSC Advances, 2016, 6, 73222-73268.	1.7	188
99	A new Dy-doped BaCeO ₃ â€"BaZrO ₃ proton-conducting material as a promising electrolyte for reversible solid oxide fuel cells. Journal of Materials Chemistry A, 2016, 4, 15390-15399.	5.2	97
100	A tape calendering method as an effective way for the preparation of proton ceramic fuel cells with enhanced performance. Electrochimica Acta, 2016, 210, 681-688.	2.6	43
101	Crude bio-glycerol aqueous phase reforming and hydrogenolysis over commercial SiO2Al2O3 nickel catalyst. Renewable Energy, 2016, 97, 373-379.	4.3	36
102	New Electro-Fenton Gas Diffusion Cathode based on Nitrogen-doped Graphene@Carbon Nanotube Composite Materials. Electrochimica Acta, 2016, 194, 228-238.	2.6	102
103	Acceptor doping effects on microstructure, thermal and electrical properties of proton-conducting BaCe0.5Zr0.3Ln0.2O3â~δ (Ln = Yb, Gd, Sm, Nd, La or Y) ceramics for solid oxide fuel cell applications. Electrochimica Acta, 2016, 192, 80-88.	2.6	45
104	Deposition and Characterization of Y-doped CaZrO 3 Electrolyte Film on a Porous SrTi 0.8 Fe 0.2 O 3-δ Substrate. Electrochimica Acta, 2016, 202, 39-46.	2.6	21
105	A novel sulfur-nitrogen dual doped ordered mesoporous carbon electrocatalyst for efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2016, 189, 1-11.	10.8	123
106	Combined amperometric and potentiometric hydrogen sensors based on BaCe0.7Zr0.1Y0.2O3â~δ proton-conducting ceramic. Sensors and Actuators B: Chemical, 2016, 231, 175-182.	4.0	31
107	Characterization of proton-conducting electrolyte based on La0.9Sr0.1YO3– and its application in a hydrogen amperometric sensor. Sensors and Actuators B: Chemical, 2016, 225, 446-452.	4.0	33
108	Aqueous phase reforming (APR) of glycerol over platinum supported on Al 2 O 3 catalyst. Renewable Energy, 2016, 85, 1116-1126.	4.3	52

7

#	Article	IF	Citations
109	Hydrogenolysis of glycerol to propylene glycol by in situ produced hydrogen from aqueous phase reforming of glycerol over SiO2–Al2O3 supported nickel catalyst. Fuel Processing Technology, 2016, 142, 135-146.	3.7	60
110	Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes. Progress in Materials Science, 2016, 75, 38-79.	16.0	285
111	Electrocatalytic activity of Vulcan-XC-72 supported Pd, Rh and Pd Rh toward HOR and ORR. Applied Catalysis B: Environmental, 2015, 174-175, 203-211.	10.8	38
112	Thermal expansion of materials in the barium cerate-zirconate system. Physics of the Solid State, 2015, 57, 285-289.	0.2	46
113	Effect of Nature of the Ceramic Component of the Composite Electrodes Based on La $<$ sub $>1.7sub>Ca(Sr)<sub>0.3sub>NiO<sub>4+l^{'}sub> on Their Electrochemical Performance. ECS Transactions, 2015, 68, 809-815.$	0.3	8
114	A simple and low-cost amperometric sensor for measuring H2, CO, and CH4. Sensors and Actuators B: Chemical, 2015, 221, 879-883.	4.0	19
115	Polarization study of Fe BaCe0.5Zr0.3Y0.08Yb0.08Cu0.04O3-δ Fe electrochemical cells in wet H2 atmosphere. International Journal of Hydrogen Energy, 2015, 40, 14609-14615.	3.8	2
116	A thermodynamic analysis of hydrogen production via aqueous phase reforming of glycerol. Fuel Processing Technology, 2015, 134, 107-115.	3.7	32
117	Ceria promoted Pd/C catalysts for glucose electrooxidation in alkaline media. Applied Catalysis B: Environmental, 2015, 176-177, 233-239.	10.8	46
118	Textured BaCe0.5Zr0.3Ln0.2O3â^ (Ln = Yb, Y, Gd, Sm, Nd and La) ceramics obtained by the aid of solid-state reactive sintering method. Scripta Materialia, 2015, 109, 34-37.	2.6	8
119	Efficient and Stable Carbon-coated Nickel Foam Cathodes for the Electro-Fenton Process. Electrochimica Acta, 2015, 176, 811-818.	2.6	39
120	Electrocatalysts for Glucose Electrooxidation Reaction: A Review. Topics in Catalysis, 2015, 58, 1311-1327.	1.3	110
121	Insights on thermal and transport features of BaCe0.8â^'Zr Y0.2O3â^'Î^ proton-conducting materials. Journal of Power Sources, 2015, 278, 436-444.	4.0	68
122	An investigation of WC stability during the preparation of Pt@WC/OMC via a pulse microwave assisted polyol method. Applied Catalysis B: Environmental, 2015, 166-167, 224-230.	10.8	13
123	Nitrogen-doped ordered mesoporous carbon: synthesis and active sites for electrocatalysis of oxygen reduction reaction. Applied Catalysis B: Environmental, 2015, 165, 566-571.	10.8	172
124	Preparation and characterization of a novel KOH activated graphite felt cathode for the electro-Fenton process. Applied Catalysis B: Environmental, 2015, 165, 360-368.	10.8	170
125	Sulfur and carbon tolerance of BaCeO3–BaZrO3 proton-conducting materials. Journal of Power Sources, 2015, 273, 716-723.	4.0	67
126	Glucose electrooxidation in alkaline medium: Performance enhancement of PdAu/C synthesized by NH 3 modified pulse microwave assisted polyol method. Applied Catalysis B: Environmental, 2015, 162, 275-281.	10.8	45

#	Article	IF	CITATIONS
127	BaCeO3: Materials development, properties and application. Progress in Materials Science, 2014, 60, 72-129.	16.0	301
128	Carbon-supported PdSn and Pd3Sn2 anodes for glucose electrooxidation in alkaline media. Applied Catalysis B: Environmental, 2014, 158-159, 209-216.	10.8	76
129	Dimethyl phthalate degradation at novel and efficient electro-Fenton cathode. Applied Catalysis B: Environmental, 2014, 156-157, 1-7.	10.8	47
130	Efficient and poison-tolerant PdxAuy/C binary electrocatalysts for glucose electrooxidation in alkaline medium. Applied Catalysis B: Environmental, 2014, 150-151, 268-274.	10.8	88
131	Ordered mesoporous tungsten carbide/carbon composites promoted Pt catalyst with high activity and stability for methanol electrooxidation. Applied Catalysis B: Environmental, 2014, 147, 518-525.	10.8	58
132	Cu and Gd co-doped BaCeO3 proton conductors: Experimental vs SEM image algorithmic-segmentation results. Electrochimica Acta, 2014, 125, 371-379.	2.6	34
133	Conductivity of Gd-doped BaCeO 3 protonic conductor in Е2 –Е2 О–О 2 atmospheres. International Journ of Hydrogen Energy, 2014, 39, 21547-21552.	al 3.8	29
134	Hydrogen production aided by new (1â^' x)SrTi 0.5 Fe 0.5 O 3â€"Î^â€" x Ce 0.8 (Sm 0.8 Sr 0.2) 0.2 O 2â€"Î^ (MIEC composite membranes. International Journal of Hydrogen Energy, 2014, 39, 12472-12479.	C) 3.8	13
135	Application of Solid oxide proton-conducting electrolytes for amperometric analysis of hydrogen in H2+N2+H2O gas mixtures. Electrochimica Acta, 2014, 141, 120-125.	2.6	23
136	Glucose electrooxidation over PdxRh/C electrocatalysts in alkaline medium. Applied Catalysis B: Environmental, 2014, 147, 481-489.	10.8	99
137	Structural, thermomechanical and electrical properties of new (1Ââ°'Âx)Ce0.8Nd0.2O2â°Î'〓xBaCe0.8Nd0.2O3â°Î´ composites. Journal of Power Sources, 2014, 267, 269-279.	4.0	28
138	PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review. Journal of Applied Electrochemistry, 2013, 43, 119-136.	1.5	191
139	Electrodes for solid electrolyte sensors for the measurementÂofÂCOÂandÂH2 content in air. International Journal of Hydrogen Energy, 2013, 38, 13484-13490.	3.8	17
140	Ethanol Steam Reforming in a Two-Step Process. Short-Time Feasibility Tests. Energy & Energy	2.5	4
141	Preparation of graphitic mesoporous carbon for the simultaneous detection of hydroquinone and catechol. Applied Catalysis B: Environmental, 2013, 129, 367-374.	10.8	108
142	Novel composite solid state electrolytes on the base of BaCeO3 and CeO2 for intermediate temperature electrochemical devices. Journal of Power Sources, 2013, 221, 217-227.	4.0	55
143	Exergy Analysis of an Intermediate Temperature Solid Oxide Fuel Cell-Gas Turbine Hybrid System Fed with Ethanol. Energies, 2012, 5, 4268-4287.	1.6	23
144	Electrochemical properties of ceramic membranes based on SrTi0.5Fe0.5O3â^' in reduced atmosphere. International Journal of Hydrogen Energy, 2012, 37, 14569-14575.	3.8	14

#	Article	IF	Citations
145	Low and non-platinum electrocatalysts for PEMFCs: Current status, challenges and prospects. Applied Catalysis B: Environmental, 2012, 127, 371-388.	10.8	333
146	Two-step sequence for synthesis of efficient PtSn@Rh/C catalyst for oxidizing ethanol and intermediate products. Applied Catalysis B: Environmental, 2012, 119-120, 227-233.	10.8	24
147	A facile soft-template synthesis of ordered mesoporous carbon/tungsten carbide composites with high surface area for methanol electrooxidation. Journal of Power Sources, 2012, 200, 8-13.	4.0	59
148	Single phase materials based on Co-doped SrTiO3 for mixed ionic-electronic conductors applications. Journal of Power Sources, 2012, 210, 339-344.	4.0	10
149	Understanding the electrocatalytic activity of PtxSny in direct ethanol fuel cells. Journal of Power Sources, 2011, 196, 4980-4986.	4.0	37
150	Investigation of the structural and electrical properties of Co-doped BaCe0.9Gd0.1O3â^Î. Solid State lonics, 2011, 182, 41-46.	1.3	22
151	The effect of microwave operation parameters on the electrochemical performance of Pt/C catalysts. Applied Catalysis B: Environmental, 2011, 103, 287-293.	10.8	36
152	Effect of pore morphology of mesoporous carbons on the electrocatalytic activity of Pt nanoparticles for fuel cell reactions. Applied Catalysis B: Environmental, 2010, 98, 132-137.	10.8	119
153	Direct ethanol fuel cells: The effect of the cell discharge current on the products distribution. Applied Catalysis B: Environmental, 2010, 100, 157-164.	10.8	36
154	KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction. Journal of Power Sources, 2010, 195, 7409-7414.	4.0	49
155	Degradation of perfluorinated sulfonic acid films: An in-situ infrared spectro-electrochemical study. Polymer Degradation and Stability, 2009, 94, 1707-1713.	2.7	23
156	High surface area tungsten carbide microspheres as effective Pt catalyst support for oxygen reduction reaction. Applied Catalysis B: Environmental, 2009, 89, 223-228.	10.8	108
157	Influence of Cu on the properties of gadolinium-doped barium cerate. Journal of Power Sources, 2008, 181, 292-296.	4.0	38
158	Investigation of the protonic conduction in Sm doped BaCeO3. Journal of Power Sources, 2008, 181, 207-213.	4.0	97
159	The effect of co-dopant addition on the properties of Ln0.2Ce0.8O2â^î^(Ln=Gd, Sm, La) solid-state electrolyte. Journal of Power Sources, 2008, 181, 199-206.	4.0	67
160	Direct alcohol fuel cells: A novel non-platinum and alcohol inert ORR electrocatalyst. Applied Catalysis B: Environmental, 2008, 78, 381-387.	10.8	79
161	Influence of sintering additives of transition metals on the properties of gadolinium-doped barium cerate. Solid State Ionics, 2008, 179, 887-890.	1.3	47
162	How Far Are Direct Alcohol Fuel Cells From Our Energy Future?. Journal of Fuel Cell Science and Technology, 2007, 4, 203-209.	0.8	37

#	Article	IF	CITATIONS
163	A Temperature-Programmed-Reduction Study on La1â^'xSrxCrO3 and Surface-Ruthenium-Modified La1â^'xSrxCrO3. Journal of Fuel Cell Science and Technology, 2007, 4, 79-83.	0.8	10
164	Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3â^δbased cathode SOFC. Applied Catalysis B: Environmental, 2007, 76, 320-327.	10.8	164
165	Ethanol/water mixture permeation through a Nafion \hat{A}^{\otimes} based membrane electrode assembly. Journal of Power Sources, 2007, 171, 1-7.	4.0	31
166	High temperature electrolyzer based on solid oxide co-ionic electrolyte: A theoretical model. Journal of Power Sources, 2007, 171, 205-211.	4.0	23
167	Investigation of the Reaction of Ethanol-Steam Mixtures in a YSZ Electrochemical Reactor Operated in a Fuel Cell Mode. Journal of Fuel Cell Science and Technology, 2006, 3, 459-463.	0.8	7
168	Direct ethanol fuel cell anode simulation model. Journal of Power Sources, 2006, 157, 657-665.	4.0	54
169	A three-dimensional CFD model of direct ethanol fuel cells: Anode flow bed analysis. Solid State Ionics, 2006, 177, 2133-2138.	1.3	32
170	Ethanol crossover and direct ethanol PEM fuel cell performance modeling and experimental validation. Chemical Engineering Science, 2006, 61, 7497-7508.	1.9	75
171	Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs). Applied Catalysis B: Environmental, 2006, 63, 187-193.	10.8	383
172	Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3â^Î based cathode IT-SOFC. Applied Catalysis B: Environmental, 2006, 66, 64-71.	10.8	204
173	Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance. Journal of Power Sources, 2005, 140, 50-58.	4.0	262
174	The effect of the MEA preparation procedure on both ethanol crossover and DEFC performance. Journal of Power Sources, 2005, 140, 103-110.	4.0	86
175	Ethanol crossover phenomena and its influence on the performance of DEFC. Journal of Power Sources, 2005, 145, 266-271.	4.0	74
176	Exergy analysis of an ethanol fuelled proton exchange membrane (PEM) fuel cell system for automobile applications. Journal of Power Sources, 2005, 145, 502-514.	4.0	27
177	Direct methanol fuel cells: The effect of electrode fabrication procedure on MEAs structural properties and cell performance. Journal of Power Sources, 2005, 145, 495-501.	4.0	112
178	The effect of methanol and ethanol cross-over on the performance of PtRu/C-based anode DAFCs. Applied Catalysis B: Environmental, 2005, 55, 65-72.	10.8	141
179	Benzene electro-oxidation in a PEMFC for phenol and electricity cogeneration. Applied Catalysis B: Environmental, 2005, 61, 184-191.	10.8	5
180	Direct ethanol PEM fuel cells: The case of platinum based anodes. International Journal of Hydrogen Energy, 2005, 30, 995-1001.	3.8	224

#	Article	IF	Citations
181	Bi4Cu0.2V1.8 O11–Β based membrane electrochemical reactors for propane oxidation at moderate temperaturesbased membrane electrochemical reactors for propane oxidation at moderate temperatures. lonics, 2005, 11, 184-188.	1.2	3
182	Direct methanol fuel cells: The influence of methanol on the reduction of oxygen over Pt/C catalysts with different particle sizes. Ionics, 2005, 11 , $112-119$.	1.2	1
183	Direct methanol fuel cells: Methanol crossover and its influence on single DMFC performance. Ionics, 2004, 10, 458-462.	1.2	39
184	Pt-based anode catalysts for direct ethanol fuel cells. Solid State Ionics, 2004, 175, 797-803.	1.3	467
185	Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts. Journal of Power Sources, 2004, 126, 16-22.	4.0	206
186	Exergy analysis of a solid oxide fuel cell power plant fed by either ethanol or methane. Journal of Power Sources, 2004, 131, 224-230.	4.0	69
187	A SOFC based on a co-ionic electrolyte. Journal of Power Sources, 2004, 131, 231-236.	4.0	28
188	Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells. Journal of Power Sources, 2004, 131, 217-223.	4.0	264
189	Pt based anode catalysts for direct ethanol fuel cells. Applied Catalysis B: Environmental, 2003, 46, 273-285.	10.8	547
190	The importance of the fuel choice on the efficiency of a solid oxide fuel cell system. Journal of Power Sources, 2003, 123, 200-205.	4.0	33
191	Thermodynamic and Economic Analysis of a Steam Reformer-Solid Oxide Fuel Cell System Fed by Natural Gas and Ethanol. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 2002, 24, 365-373.	0.5	7
192	The oxidation of ethanol over Pt catalyst-electrodes deposited on ZrO2 (8 mol% Y2O3). Solid State Ionics, 2002, 152-153, 721-726.	1.3	7
193	Ethanol decomposition over Pd-based catalyst in the presence of steam. Reaction Kinetics and Catalysis Letters, 2002, 76, 343-351.	0.6	31
194	Ethanol and methane fueled solid oxide fuel cells: A comparative study. Ionics, 2001, 7, 232-236.	1.2	2
195	Electrochemical promotion of Pt during the oxidation of ethanol. Ionics, 2001, 7, 237-240.	1.2	3
196	Thermodynamic analysis of a solid oxide fuel cell system fuelled by ethanol. Journal of Power Sources, 2001, 102, 210-217.	4.0	89
197	Synthesis gas production by steam reforming of ethanol. Applied Catalysis A: General, 2001, 220, 123-127.	2.2	122
198	Catalytic and electrocatalytic oxidation of ethanol over a La0.6Sr0.4Co0.8Fe0.2O3 perovskite-type catalyst. Solid State Ionics, 2000, 136-137, 849-855.	1.3	9

#	Article	IF	Citations
199	High Temperature Electrochemical Oxidation of Ethanol Over Perovskite-Type Oxides. Reaction Kinetics and Catalysis Letters, 2000, 71, 19-25.	0.6	2
200	Ethanol utilization in solid oxide fuel cells: A thermodynamic approach. Ionics, 1999, 5, 206-212.	1.2	10
201	Methane activation on a La0.6Sr0.4Co0.8Fe0.2O3 perovskite. Applied Catalysis A: General, 1998, 169, 249-261.	2.2	52
202	Catalytic behavior of La0.6Sr0.4Co0.8Fe0.2O3 perovskite-type oxide thin films deposited on YSZ during the reaction of ethanol oxidation. lonics, 1998, 4, 157-160.	1.2	1
203	Methane catalytic and electrocatalytic combustion over perovskite type oxides deposited on YSZ Studies in Surface Science and Catalysis, 1998, , 93-98.	1.5	4
204	Methane activation on a La0.6Sr0.4Co0.8Fe0.2O3 perovsksite; catalytic and electrocatalytic results. lonics, 1997, 3, 128-133.	1.2	4
205	Catalytic and electrocatalytic activation of methane over manganese oxides deposited on YSZ. Ionics, 1997, 3, 453-456.	1.2	3
206	Electrode polarization and electrical properties of the La0.6Sr0.4Co0.8Fe0.2O3 \$minus; \$delta;, O2/yttria stabilized zirconia interface: Effect of gas phase composition and temperature. Solid State lonics, 1996, 86-88, 1451-1456.	1.3	8
207	Production of synthesis gas in a solid electrolyte cell. Ionics, 1995, 1, 214-219.	1.2	8
208	Oxidative Coupling of CH4 on Ag Catalyst-Electrodes Deposited on ZrO2 (8 mol% Y2O3). Journal of Catalysis, 1993, 144, 333-347.	3.1	46
209	Non-Faradaic Electrochemical Modification of Catalytic Activity. Journal of Catalysis, 1993, 140, 53-70.	3.1	69
210	Solid Electrolytes for in Situ Promotion of Catalyst Surfaces: The Nemca Effect. Studies in Surface Science and Catalysis, 1993, 75, 2139-2142.	1.5	1
211	Highly dispersed platinum honeycomb reforming catalysts: Sintering behavior and activity. Reaction Kinetics and Catalysis Letters, 1992, 48, 315-323.	0.6	1
212	Oxidative coupling of methane over yttria-doped zirconia solid electrolyte. Applied Catalysis, 1991, 68, 41-53.	1.1	18
213	Out of the cell performance of reforming catalysts for direct molten carbonate fuel cells (DMCFC). International Journal of Hydrogen Energy, 1988, 13, 729-734.	3.8	4
214	Coked reforming catalysts: Self-regeneration by residual hydrogen. Reaction Kinetics and Catalysis Letters, 1988, 36, 39-46.	0.6	2
215	Catalytic Activity of Novel Pt Based High Surface Area Honeycomb Supports. Studies in Surface Science and Catalysis, 1988, , 43-50.	1.5	2
216	Alkylation of toluene with methanol III: Para-selectivity on modified ZSM-5 zeolites. Zeolites, 1987, 7, 408-411.	0.9	20

#	Article	IF	CITATIONS
217	Perspective Bace0.5Zr0.3Ln0.2o3â~Δ (Ln =Y, Dy, Sm and Nd) Proton-Conducting Electrolytes for Solid Oxide Fuel Cells. , 0, , .		O