Casey A Gifford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6107789/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcription factor protein interactomes reveal genetic determinants in heart disease. Cell, 2022, 185, 794-814.e30.	28.9	39
2	Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease. Science, 2021, 371, .	12.6	53
3	A transcriptional switch governs fibroblast activation in heart disease. Nature, 2021, 595, 438-443.	27.8	100
4	Single-cell analysis of cardiogenesis reveals basis for organ-level developmental defects. Nature, 2019, 572, 120-124.	27.8	197
5	Context-Specific Transcription Factor Functions Regulate Epigenomic and Transcriptional Dynamics during Cardiac Reprogramming. Cell Stem Cell, 2019, 25, 87-102.e9.	11.1	89
6	Oligogenic inheritance of a human heart disease involving a genetic modifier. Science, 2019, 364, 865-870.	12.6	142
7	Genetic determinants and epigenetic effects of pioneer-factor occupancy. Nature Genetics, 2018, 50, 250-258.	21.4	139
8	Differentiation of V2a interneurons from human pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4969-4974.	7.1	60
9	Transcriptional and Chromatin Dynamics of Muscle Regeneration after Severe Trauma. Stem Cell Reports, 2016, 7, 983-997.	4.8	41
10	Heart disease modelling adds a Notch to its belt. Nature Cell Biology, 2016, 18, 3-5.	10.3	7
11	In vivo Monitoring of Transcriptional Dynamics After Lower-Limb Muscle Injury Enables Quantitative Classification of Healing. Scientific Reports, 2015, 5, 13885.	3.3	21
12	Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency. Cell, 2015, 162, 412-424.	28.9	206
13	Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nature Genetics, 2015, 47, 469-478.	21.4	409
14	A qPCR ScoreCard quantifies the differentiation potential of human pluripotent stem cells. Nature Biotechnology, 2015, 33, 1182-1192.	17.5	138
15	Dissecting neural differentiation regulatory networks through epigenetic footprinting. Nature, 2015, 518, 355-359.	27.8	172
16	Transcriptional and Epigenetic Dynamics during Specification of Human Embryonic Stem Cells. Cell, 2013, 153, 1149-1163.	28.9	419
17	Epigenetic obstacles encountered by transcription factors: reprogramming against all odds. Current Opinion in Genetics and Development, 2012, 22, 409-415.	3.3	24
18	Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nature Cell Biology, 2007, 9, 797-803.	10.3	280

#	Article	IF	CITATIONS
19	A Virulence Locus of Pseudomonas aeruginosa Encodes a Protein Secretion Apparatus. Science, 2006, 312, 1526-1530.	12.6	984