
Dagmar Wilhelm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6107712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of NEDD4 causes complete XY gonadal sex reversal in mice. Cell Death and Disease, 2022, 13, 75.	2.7	2
2	Origin, specification and differentiation of a rare supporting-like lineage in the developing mouse gonad. Science Advances, 2022, 8, .	4.7	32
3	Heterozygous deletion of <i>Sox9</i> in mouse mimics the gonadal sex reversal phenotype associated with campomelic dysplasia in humans. Human Molecular Genetics, 2021, 29, 3781-3792.	1.4	5
4	The gene encoding the ketogenic enzyme HMGCS2 displays a unique expression during gonad development in mice. PLoS ONE, 2020, 15, e0227411.	1.1	12
5	Identification of novel interacting partners of the NEDD4 ubiquitin ligase in mouse testis. Journal of Proteomics, 2020, 223, 103830.	1.2	2
6	Genes and Gene Defects Affecting Gonadal Development and Sex Determination. , 2019, , 695-703.		1
7	A novel evolutionary conserved mechanism of RNA stability regulates synexpression of primordial germ cell-specific genes prior to the sex-determination stage in medaka. PLoS Biology, 2019, 17, e3000185.	2.6	8
8	The impact of new technologies in our understanding of testis formation and function. Molecular and Cellular Endocrinology, 2018, 468, 1-2.	1.6	0
9	Genetic Mechanisms of Sex Determination. , 2018, , 245-249.		3
10	Dynamic expression patterns of Irx3 and Irx5 during germline nest breakdown and primordial follicle formation promote follicle survival in mouse ovaries. PLoS Genetics, 2018, 14, e1007488.	1.5	25
11	Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements. BMC Biology, 2018, 16, 16.	1.7	56
12	Amplification of R-spondin1 signaling induces granulosa cell fate defects and cancers in mouse adult ovary. Oncogene, 2017, 36, 208-218.	2.6	20
13	Male Sexual Differentiation. Endocrinology, 2017, , 217-244.	0.1	0
14	Testis determination requires the function of a specific FGFR2 isoform. Mechanisms of Development, 2017, 145, S145.	1.7	0
15	Testis Determination Requires a Specific FGFR2 Isoform to Repress FOXL2. Endocrinology, 2017, 158, 3832-3843.	1.4	40
16	Mice Lacking Hbp1 Function Are Viable and Fertile. PLoS ONE, 2017, 12, e0170576.	1.1	3
17	Male Sexual Differentiation. Endocrinology, 2017, , 1-28.	0.1	0
18	Non-coding RNAs: An Introduction. Advances in Experimental Medicine and Biology, 2016, 886, 13-32.	0.8	101

#	Article	IF	CITATIONS
19	Non-coding RNA and the Reproductive System. Advances in Experimental Medicine and Biology, 2016, , .	0.8	4
20	WNT/β-catenin and p27/FOXL2 differentially regulate supporting cell proliferation in the developing ovary. Developmental Biology, 2016, 412, 250-260.	0.9	43
21	Genes and Gene Defects Affecting Gonad Development and Primary Sex Determinationâ [~] †. , 2015, , .		2
22	Stem Cells, Progenitor Cells, and Lineage Decisions in the Ovary. Endocrine Reviews, 2015, 36, 65-91.	8.9	97
23	ROBO2 restricts the nephrogenic field and regulates Wolffian duct–nephrogenic cord separation. Developmental Biology, 2015, 404, 88-102.	0.9	37
24	The role of non-coding RNAs in male sex determination and differentiation. Reproduction, 2015, 150, R93-R107.	1.1	30
25	FOXO1/3 and PTEN Depletion in Granulosa Cells Promotes Ovarian Granulosa Cell Tumor Development. Molecular Endocrinology, 2015, 29, 1006-1024.	3.7	62
26	Signaling Pathways Involved in Mammalian Sex Determination and Gonad Development. Sexual Development, 2015, 9, 297-315.	1.1	84
27	Development of mammalian ovary. Journal of Endocrinology, 2014, 221, R145-R161.	1.2	79
28	Anatomical and Molecular Analyses of XY Ovaries from the African Pygmy Mouse <i>Mus minutoides</i> . Sexual Development, 2014, 8, 356-363.	1.1	17
29	Loss of Function Mutation in the Palmitoyl-Transferase HHAT Leads to Syndromic 46,XY Disorder of Sex Development by Impeding Hedgehog Protein Palmitoylation and Signaling. PLoS Genetics, 2014, 10, e1004340.	1.5	63
30	Marker genes identify three somatic cell types in the fetal mouse ovary. Developmental Biology, 2014, 394, 242-252.	0.9	106
31	Mammalian Sex Determination and Gonad Development. Current Topics in Developmental Biology, 2013, 106, 89-121.	1.0	37
32	Novel PCR Assay for Determining the Genetic Sex of Mice. Sexual Development, 2013, 7, 207-211.	1.1	126
33	Epigenetic Regulation of Mouse Sex Determination by the Histone Demethylase Jmjd1a. Science, 2013, 341, 1106-1109.	6.0	217
34	Insulin and IGF1 Receptors Are Essential for XX and XY Gonadal Differentiation and Adrenal Development in Mice. PLoS Genetics, 2013, 9, e1003160.	1.5	112
35	MicroRNAs-140-5p/140-3p Modulate Leydig Cell Numbers in the Developing Mouse Testis. Biology of Reproduction, 2013, 88, 143-143.	1.2	68
36	SOX9 Regulates MicroRNA miR-202-5p/3p Expression During Mouse Testis Differentiation1. Biology of Reproduction, 2013, 89, 34.	1.2	97

#	Article	IF	CITATIONS
37	Sex Determination, Mouse. , 2013, , 405-407.		0
38	A New Model of Development of the Mammalian Ovary and Follicles. PLoS ONE, 2013, 8, e55578.	1.1	111
39	Signaling through the TGF Beta-Activin Receptors ALK4/5/7 Regulates Testis Formation and Male Germ Cell Development. PLoS ONE, 2013, 8, e54606.	1.1	75
40	Pinstripe: a suite of programs for integrating transcriptomic and proteomic datasets identifies novel proteins and improves differentiation of protein-coding and non-coding genes. Bioinformatics, 2012, 28, 3042-3050.	1.8	70
41	Excess DAX1 Leads to XY Ovotesticular Disorder of Sex Development (DSD) in Mice by Inhibiting Steroidogenic Factor-1 (SF1) Activation of the Testis Enhancer of SRY-box-9 (Sox9). Endocrinology, 2012, 153, 1948-1958.	1.4	66
42	Three-Dimensional Imaging of Prox1-EGFP Transgenic Mouse Gonads Reveals Divergent Modes of Lymphangiogenesis in the Testis and Ovary. PLoS ONE, 2012, 7, e52620.	1.1	46
43	Cbx2, a Polycomb Group Gene, Is Required for Sry Gene Expression in Mice. Endocrinology, 2012, 153, 913-924.	1.4	131
44	Identification of Novel Markers of Mouse Fetal Ovary Development. PLoS ONE, 2012, 7, e41683.	1.1	42
45	Expression of distinct RNAs from 3′ untranslated regions. Nucleic Acids Research, 2011, 39, 2393-2403.	6.5	185
46	Expansion of the Ago gene family in the teleost clade. Development Genes and Evolution, 2011, 221, 95-104.	0.4	9
47	Analysis of Gene Function in Cultured Embryonic Mouse Gonads Using Nucleofection. Sexual Development, 2011, 5, 7-15.	1.1	12
48	FOXL2 and BMP2 Act Cooperatively to Regulate Follistatin Gene Expression during Ovarian Development. Endocrinology, 2011, 152, 272-280.	1.4	89
49	Insights into the Aetiology of Ovotesticular DSD from Studies of Mouse Ovotestes. Advances in Experimental Medicine and Biology, 2011, 707, 55-56.	0.8	1
50	Molecular characterization of the Bidder's organ in the cane toad (<i>Bufo marinus</i>). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 503-513.	0.6	6
51	Sox10 gain-of-function causes XX sex reversal in mice: implications for human 22q-linked disorders of sex development. Human Molecular Genetics, 2010, 19, 506-516.	1.4	149
52	Retinoblastoma 1 Protein Modulates XY Germ Cell Entry into G1/G0 Arrest During Fetal Development in Mice1. Biology of Reproduction, 2010, 82, 433-443.	1.2	55
53	A Male-Specific Role for p38 Mitogen-Activated Protein Kinase in Germ Cell Sex Differentiation in Mice1. Biology of Reproduction, 2010, 83, 1005-1014.	1.2	26
54	Gonadal defects in Cited2 -mutant mice indicate a role for SF1 in both testis and ovary differentiation. International Journal of Developmental Biology, 2010, 54, 683-689.	0.3	46

#	Article	IF	CITATIONS
55	The Game Plan. Current Topics in Developmental Biology, 2010, 90, 231-262.	1.0	31
56	A cell-autonomous role for WT1 in regulating Sry in vivo. Human Molecular Genetics, 2009, 18, 3429-3438.	1.4	62
57	<i>Sox7</i> and <i>Sox17</i> are strain-specific modifiers of the lymphangiogenic defects caused by <i>Sox18</i> dysfunction in mice. Development (Cambridge), 2009, 136, 2385-2391.	1.2	82
58	Loss of Mitogen-Activated Protein Kinase Kinase Kinase 4 (MAP3K4) Reveals a Requirement for MAPK Signalling in Mouse Sex Determination. PLoS Biology, 2009, 7, e1000196.	2.6	130
59	The Cerebellin 4 Precursor Gene Is a Direct Target of SRY and SOX9 in Mice1. Biology of Reproduction, 2009, 80, 1178-1188.	1.2	44
60	A critical time window of <i>Sry</i> action in gonadal sex determination in mice. Development (Cambridge), 2009, 136, 129-138.	1.2	189
61	Cell cycle analysis of fetal germ cells during sex differentiation in mice. Biology of the Cell, 2009, 101, 587-598.	0.7	28
62	Ex vivo magnetofection: A novel strategy for the study of gene function in mouse organogenesis. Developmental Dynamics, 2009, 238, 956-964.	0.8	19
63	Threeâ€dimensional visualization of testis cord morphogenesis, a novel tubulogenic mechanism in development. Developmental Dynamics, 2009, 238, 1033-1041.	0.8	82
64	Endothelial cell migration directs testis cord formation. Developmental Biology, 2009, 326, 112-120.	0.9	164
65	Antagonism of the testis- and ovary-determining pathways during ovotestis development in mice. Mechanisms of Development, 2009, 126, 324-336.	1.7	102
66	Functional analysis of the SRY—KRAB interaction in mouse sex determination. Biology of the Cell, 2009, 101, 55-67.	0.7	15
67	Non-Coding RNAs in Mammalian Sexual Development. Sexual Development, 2009, 3, 302-316.	1.1	13
68	Global Survey of Protein Expression during Gonadal Sex Determination in Mice. Molecular and Cellular Proteomics, 2009, 8, 2624-2641.	2.5	17
69	Sox18 induces development of the lymphatic vasculature in mice. Nature, 2008, 456, 643-647.	13.7	483
70	Sox8 is a critical regulator of adult Sertoli cell function and male fertility. Developmental Biology, 2008, 316, 359-370.	0.9	92
71	Sex Determination and Gonadal Development in Mammals. Physiological Reviews, 2007, 87, 1-28.	13.1	548
72	Comparative Analysis of Anti-Mouse SRY Antibodies. Sexual Development, 2007, 1, 305-310.	1.1	14

#	Article	IF	CITATIONS
73	SOX9 Regulates Prostaglandin D Synthase Gene Transcription in Vivo to Ensure Testis Development. Journal of Biological Chemistry, 2007, 282, 10553-10560.	1.6	203
74	Aard is specifically up-regulated in Sertoli cells during mouse testis differentiation. International Journal of Developmental Biology, 2007, 51, 255-258.	0.3	16
75	R-spondin1—discovery of the long-missing, mammalian female-determining gene?. BioEssays, 2007, 29, 314-318.	1.2	23
76	Retinoid Signaling Determines Germ Cell Fate in Mice. Science, 2006, 312, 596-600.	6.0	888
77	The makings of maleness: towards an integrated view of male sexual development. Nature Reviews Genetics, 2006, 7, 620-631.	7.7	187
78	Comparative proteomic analysis to study molecular events during gonad development in mice. Genesis, 2006, 44, 168-176.	0.8	17
79	Effect of Disrupted SOX18 Transcription Factor Function on Tumor Growth, Vascularization, and Endothelial Development. Journal of the National Cancer Institute, 2006, 98, 1060-1067.	3.0	78
80	Evaluation of candidate markers for the peritubular myoid cell lineage in the developing mouse testis. Reproduction, 2005, 130, 509-516.	1.1	48
81	Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Developmental Biology, 2005, 287, 111-124.	0.9	251
82	Pisrt1, a gene implicated in XX sex reversal, is expressed in gonads of both sexes during mouse development. Molecular Genetics and Metabolism, 2005, 86, 286-292.	0.5	5
83	Sox genes and cancer. Cytogenetic and Genome Research, 2004, 105, 442-447.	0.6	129
84	Molecular characterization of three gonad cell lines. Cytogenetic and Genome Research, 2003, 101, 242-249.	0.6	31
85	SOX8 Is Expressed during Testis Differentiation in Mice and Synergizes with SF1 to Activate the Amh Promoter in Vitro. Journal of Biological Chemistry, 2003, 278, 28101-28108.	1.6	154
86	The Wilms tumor suppressor WT1 regulates early gonad development by activation of Sf1. Genes and Development, 2002, 16, 1839-1851.	2.7	241
87	Parathyroid Hormone Inhibits c-Jun N-Terminal Kinase Activity in Rat Osteoblastic Cells by a Protein Kinase A-Dependent Pathway. Endocrinology, 2002, 143, 1880-1888.	1.4	26
88	The Wilms' tumor geneWt1is required for normal development of the retina. EMBO Journal, 2002, 21, 1398-1405.	3.5	135
89	The LIM-only coactivator FHL2 modulates WT1 transcriptional activity during gonadal differentiation. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1577, 93-101.	2.4	57
90	JNK/SAPK activity contributes to TRAIL-induced apoptosis. Cell Death and Differentiation, 1999, 6, 130-135.	5.0	78

#	Article	IF	CITATIONS
91	NFkappaB activation is required for interferon regulatory factor-1-mediated interferon beta induction. FEBS Journal, 1999, 261, 546-554.	0.2	35
92	JNK/SAPK activity is not sufficient for anticancer therapy-induced apoptosis involving CD95-L, TRAIL and TNF-?. , 1999, 80, 417-424.		36
93	JNK/SAPK activity is not sufficient for anticancer therapy-induced apoptosis involving CD95-L, TRAIL and TNF-α. , 1999, 80, 417.		1
94	The Level of Intracellular Glutathione Is a Key Regulator for the Induction of Stress-Activated Signal Transduction Pathways Including Jun N-Terminal Protein Kinases and p38 Kinase by Alkylating Agents. Molecular and Cellular Biology, 1997, 17, 4792-4800.	1.1	221
95	Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis. EMBO Journal, 1997, 16, 6200-6208.	3.5	254
96	ATF-2 is preferentially activated by stress-activated protein kinases to mediate c-jun induction in response to genotoxic agents EMBO Journal, 1995, 14, 1798-1811.	3.5	540
97	Both ATF-2 and c-Jun are Phosphorylated by Stress-Activated Protein Kinases in Response to UV Irradiation. Immunobiology, 1995, 193, 143-148.	0.8	38