
Cheng Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6107475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Achieving Nearly 30% External Quantum Efficiency for Orange–Red Organic Light Emitting Diodes by Employing Thermally Activated Delayed Fluorescence Emitters Composed of 1,8â€Naphthalimideâ€Acridine Hybrids. Advanced Materials, 2018, 30, 1704961.	11.1	488
2	Highly efficient luminescence from space-confined charge-transfer emitters. Nature Materials, 2020, 19, 1332-1338.	13.3	413
3	Precisely Controlling the Position of Bromine on the End Group Enables Wellâ€Regular Polymer Acceptors for Allâ€Polymer Solar Cells with Efficiencies over 15%. Advanced Materials, 2020, 32, e2005942.	11.1	282
4	Fineâ€Tuning of Molecular Packing and Energy Level through Methyl Substitution Enabling Excellent Small Molecule Acceptors for Nonfullerene Polymer Solar Cells with Efficiency up to 12.54%. Advanced Materials, 2018, 30, 1706124.	11.1	253
5	Asymmetrical Ladderâ€Type Donorâ€Induced Polar Small Molecule Acceptor to Promote Fill Factors Approaching 77% for Highâ€Performance Nonfullerene Polymer Solar Cells. Advanced Materials, 2018, 30, e1800052.	11.1	252
6	Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Rollâ€Off. Advanced Functional Materials, 2011, 21, 1168-1178.	7.8	229
7	A Novel Thiophene-Fused Ending Group Enabling an Excellent Small Molecule Acceptor for High-Performance Fullerene-Free Polymer Solar Cells with 11.8% Efficiency. Solar Rrl, 2017, 1, 1700044.	3.1	198
8	Realizing 22.5% External Quantum Efficiency for Solutionâ€Processed Thermally Activated Delayedâ€Fluorescence OLEDs with Red Emission at 622 nm via a Synergistic Strategy of Molecular Engineering and Host Selection. Advanced Materials, 2019, 31, e1901404.	11.1	175
9	Naphthothiadiazoleâ€Based Nearâ€Infrared Emitter with a Photoluminescence Quantum Yield of 60% in Neat Film and External Quantum Efficiencies of up to 3.9% in Nondoped OLEDs. Advanced Functional Materials, 2017, 27, 1606384.	7.8	173
10	Pure Hydrocarbon Hosts for â‰^100% Exciton Harvesting in Both Phosphorescent and Fluorescent Lightâ€Emitting Devices. Advanced Materials, 2015, 27, 4213-4217.	11.1	165
11	New tetraphenylethene-based efficient blue luminophors: aggregation induced emission and partially controllable emitting color. Journal of Materials Chemistry, 2012, 22, 2478-2484.	6.7	162
12	Multifunctional Triphenylamine/Oxadiazole Hybrid as Host and Excitonâ€Blocking Material: High Efficiency Green Phosphorescent OLEDs Using Easily Available and Common Materials. Advanced Functional Materials, 2010, 20, 2923-2929.	7.8	159
13	De Novo Design of Excited-State Intramolecular Proton Transfer Emitters via a Thermally Activated Delayed Fluorescence Channel. Journal of the American Chemical Society, 2018, 140, 8877-8886.	6.6	153
14	Multi-carbazole encapsulation as a simple strategy for the construction of solution-processed, non-doped thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2016, 4, 2442-2446.	2.7	150
15	Reduced Energy Loss Enabled by a Chlorinated Thiopheneâ€Fused Endingâ€Group Small Molecular Acceptor for Efficient Nonfullerene Organic Solar Cells with 13.6% Efficiency. Advanced Energy Materials, 2019, 9, 1900041.	10.2	144
16	A Red Thermally Activated Delayed Fluorescence Emitter Simultaneously Having High Photoluminescence Quantum Efficiency and Preferentially Horizontal Emitting Dipole Orientation. Advanced Functional Materials, 2020, 30, 1908839.	7.8	129
17	Altering alkyl-chains branching positions for boosting the performance of small-molecule acceptors for highly efficient nonfullerene organic solar cells. Science China Chemistry, 2020, 63, 361-369.	4.2	128
18	Near-Infrared Polymer Light-Emitting Diodes with High Efficiency and Low Efficiency Roll-off by Using Solution-Processed Iridium(III) Phosphors. Chemistry of Materials, 2015, 27, 96-104.	3.2	122

#	Article	IF	CITATIONS
19	Heavy-atom effect promotes multi-resonance thermally activated delayed fluorescence. Chemical Engineering Journal, 2021, 426, 131169.	6.6	122
20	Molecular design of host materials based on triphenylamine/oxadiazole hybrids for excellent deep-red phosphorescent organic light-emitting diodes. Journal of Materials Chemistry, 2010, 20, 1759.	6.7	120
21	Teaching an old acceptor new tricks: rationally employing 2,1,3-benzothiadiazole as input to design a highly efficient red thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2017, 5, 1363-1368.	2.7	116
22	An N-nitrosation reactivity-based two-photon fluorescent probe for the specific in situ detection of nitric oxide. Chemical Science, 2017, 8, 4533-4538.	3.7	115
23	Asymmetric Acceptors Enabling Organic Solar Cells to Achieve an over 17% Efficiency: Conformation Effects on Regulating Molecular Properties and Suppressing Nonradiative Energy Loss. Advanced Energy Materials, 2021, 11, 2003177.	10.2	114
24	Optimizing Optoelectronic Properties of Pyrimidineâ€Based TADF Emitters by Changing the Substituent for Organic Lightâ€Emitting Diodes with External Quantum Efficiency Close to 25 % and Slow Efficiency Rollâ€Off. Chemistry - A European Journal, 2016, 22, 10860-10866.	1.7	111
25	Organic emitter integrating aggregation-induced delayed fluorescence and room-temperature phosphorescence characteristics, and its application in time-resolved luminescence imaging. Chemical Science, 2018, 9, 6150-6155.	3.7	111
26	Extending the π‣keleton of Multiâ€Resonance TADF Materials towards Highâ€Efficiency Narrowband Deepâ€Blue Emission. Angewandte Chemie - International Edition, 2022, 61, .	7.2	110
27	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie - International Edition, 2021, 60, 7227-7233.	7.2	107
28	Simple CBP isomers with high triplet energies for highly efficient blue electrophosphorescence. Journal of Materials Chemistry, 2012, 22, 2894-2899.	6.7	106
29	Unconjugated Sideâ€Chain Engineering Enables Small Molecular Acceptors for Highly Efficient Nonâ€Fullerene Organic Solar Cells: Insights into the Fineâ€Tuning of Acceptor Properties and Micromorphology. Advanced Functional Materials, 2019, 29, 1902155.	7.8	105
30	Realizing Highly Efficient Solution-Processed Homojunction-Like Sky-Blue OLEDs by Using Thermally Activated Delayed Fluorescent Emitters Featuring an Aggregation-Induced Emission Property. Journal of Physical Chemistry Letters, 2018, 9, 1547-1553.	2.1	103
31	Altering the Positions of Chlorine and Bromine Substitution on the End Group Enables Highâ€Performance Acceptor and Efficient Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2002649.	10.2	103
32	Tuning a Weak Emissive Blue Host to Highly Efficient Green Dopant by a CN in Tetracarbazolepyridines for Solutionâ€Processed Thermally Activated Delayed Fluorescence Devices. Advanced Optical Materials, 2015, 3, 786-790.	3.6	102
33	Asymmetrical Small Molecule Acceptor Enabling Nonfullerene Polymer Solar Cell with Fill Factor Approaching 79%. ACS Energy Letters, 2018, 3, 1760-1768.	8.8	102
34	Self-Assembly of a Highly Emissive Pure Organic Imine-Based Stack for Electroluminescence and Cell Imaging. Journal of the American Chemical Society, 2019, 141, 4704-4710.	6.6	101
35	Fluorine-substituted benzothiadiazole-based hole transport materials for highly efficient planar perovskite solar cells with a FF exceeding 80%. Chemical Communications, 2017, 53, 8719-8722.	2.2	94
36	Polydimethylsiloxane/covalent triazine frameworks coated stir bar sorptive extraction coupled with high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental water samples. Journal of Chromatography A, 2016, 1441, 8-15.	1.8	93

#	Article	IF	CITATIONS
37	The driving forces for twisted or planar intramolecular charge transfer. Physical Chemistry Chemical Physics, 2015, 17, 9248-9257.	1.3	92
38	Triphenylamine Dendronized Iridium(III) Complexes: Robust Synthesis, Highly Efficient Nondoped Orange Electrophosphorescence and the Structure–Property Relationship. Chemistry of Materials, 2012, 24, 174-180.	3.2	90
39	Intramolecularâ€Locked High Efficiency Ultrapure Violetâ€Blue (CIEâ€y <0.046) Thermally Activated Delayed Fluorescence Emitters Exhibiting Amplified Spontaneous Emission. Advanced Functional Materials, 2021, 31, 2009488.	7.8	88
40	Polymorphâ€Dependent Thermally Activated Delayed Fluorescence Emitters: Understanding TADF from a Perspective of Aggregation State. Angewandte Chemie - International Edition, 2020, 59, 9972-9976.	7.2	82
41	Novel pyrrole-based dyes for dye-sensitized solar cells: From rod-shape to "H―type. Journal of Materials Chemistry, 2012, 22, 6689.	6.7	81
42	Acceptor plane expansion enhances horizontal orientation of thermally activated delayed fluorescence emitters. Science Advances, 2020, 6, .	4.7	80
43	A structure–property study of fluoranthene-cored hole-transporting materials enables 19.3% efficiency in dopant-free perovskite solar cells. Chemical Science, 2019, 10, 6899-6907.	3.7	79
44	Multi‣ayer Ï€â€Stacked Molecules as Efficient Thermally Activated Delayed Fluorescence Emitters. Angewandte Chemie - International Edition, 2021, 60, 5213-5219.	7.2	79
45	Highâ€Efficiency Perovskite Solar Cells Based on New TPE Compounds as Hole Transport Materials: The Role of 2,7―and 3,6â€&ubstituted Carbazole Derivatives. Chemistry - A European Journal, 2017, 23, 4373-4379.	1.7	74
46	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. Angewandte Chemie - International Edition, 2019, 58, 8520-8525.	7.2	73
47	Designing an asymmetrical isomer to promote the LUMO energy level and molecular packing of a non-fullerene acceptor for polymer solar cells with 12.6% efficiency. Chemical Science, 2018, 9, 8142-8149.	3.7	67
48	Through Space Charge Transfer for Efficient Skyâ€Blue Thermally Activated Delayed Fluorescence (TADF) Emitter with Unconjugated Connection. Advanced Optical Materials, 2020, 8, 1901150.	3.6	67
49	Graphene oxide–TiO ₂ composite as a novel adsorbent for the preconcentration of heavy metals and rare earth elements in environmental samples followed by on-line inductively coupled plasma optical emission spectrometry detection. RSC Advances, 2015, 5, 5996-6005.	1.7	65
50	Visualizing Peroxynitrite in Microvessels of the Brain with Stroke Using an Engineered Highly Specific Fluorescent Probe. ACS Sensors, 2020, 5, 3237-3245.	4.0	63
51	Efficient deep-blue emitters comprised of an anthracene core and terminal bifunctional groups for nondoped electroluminescence. Journal of Materials Chemistry, 2011, 21, 6409.	6.7	62
52	Diarylmethylene-bridged triphenylamine derivatives encapsulated with fluorene: very high Tg host materials for efficient blue and green phosphorescent OLEDs. Journal of Materials Chemistry, 2010, 20, 3232.	6.7	60
53	RBC Membrane Camouflaged Semiconducting Polymer Nanoparticles for Near-Infrared Photoacoustic Imaging and Photothermal Therapy. Nano-Micro Letters, 2020, 12, 94.	14.4	60
54	Highly efficient solution-processed green and red electrophosphorescent devices enabled by small-molecule bipolar host material. Journal of Materials Chemistry, 2011, 21, 9326.	6.7	59

#	Article	IF	CITATIONS
55	Narrow bandgap non-fullerene acceptor based on a thiophene-fused benzothiadiazole unit with a high short-circuit current density of over 20 mA cm ^{â^2} . Journal of Materials Chemistry A, 2018, 6, 6393-6401.	5.2	59
56	Tetraphenylsilane derivatives spiro-annulated by triphenylamine/carbazole with enhanced HOMO energy levels and glass transition temperatures without lowering triplet energy: host materials for efficient blue phosphorescent OLEDs. Journal of Materials Chemistry C, 2013, 1, 463-469.	2.7	57
57	Quantitative Estimation of Exciton Binding Energy of Polythiophene-Derived Polymers Using Polarizable Continuum Model Tuned Range-Separated Density Functional. Journal of Physical Chemistry C, 2016, 120, 8048-8055.	1.5	56
58	Emitters with a pyridine-3,5-dicarbonitrile core and short delayed fluorescence lifetimes of about 1.5 μs: orange-red TADF-based OLEDs with very slow efficiency roll-offs at high luminance. Journal of Materials Chemistry C, 2018, 6, 6543-6548.	2.7	56
59	Highly Efficient Simpleâ€Structure Blue and Allâ€Phosphor Warmâ€White Phosphorescent Organic Lightâ€Emitting Diodes Enabled by Wideâ€Bandgap Tetraarylsilaneâ€Based Functional Materials. Advanced Functional Materials, 2014, 24, 5710-5718.	7.8	55
60	Replacement of Biphenyl by Bipyridine Enabling Powerful Hole Transport Materials for Efficient Perovskite Solar Cells. ChemSusChem, 2017, 10, 3833-3838.	3.6	54
61	Tailoring Optoelectronic Properties of Phenanthrolineâ€Based Thermally Activated Delayed Fluorescence Emitters through Isomer Engineering. Advanced Optical Materials, 2016, 4, 1558-1566.	3.6	53
62	Pure Organic Emitter with Simultaneous Thermally Activated Delayed Fluorescence and Roomâ€Temperature Phosphorescence: Thermalâ€Controlled Triplet Recycling Channels. Advanced Optical Materials, 2017, 5, 1700588.	3.6	53
63	Prediction of Oscillator Strength and Transition Dipole Moments with the Nuclear Ensemble Approach for Thermally Activated Delayed Fluorescence Emitters. Journal of Physical Chemistry C, 2019, 123, 10081-10086.	1.5	53
64	A Red Fluorescent Emitter with a Simultaneous Hybrid Local and Charge Transfer Excited State and Aggregationâ€Induced Emission for Highâ€Efficiency, Low Efficiency Rollâ€Off OLEDs. Advanced Optical Materials, 2017, 5, 1700145.	3.6	51
65	Polymorphâ€Dependent Thermally Activated Delayed Fluorescence Emitters: Understanding TADF from a Perspective of Aggregation State. Angewandte Chemie, 2020, 132, 10058-10062.	1.6	51
66	Boosting the Efficiency of Nearâ€Infrared Fluorescent OLEDs with an Electroluminescent Peak of Nearly 800 nm by Sensitizerâ€Based Cascade Energy Transfer. Advanced Functional Materials, 2018, 28, 1706088.	7.8	50
67	Achieving Balanced Charge Transport and Favorable Blend Morphology in Non-Fullerene Solar Cells via Acceptor End Group Modification. Chemistry of Materials, 2019, 31, 1752-1760.	3.2	48
68	Highly efficient red iridium(<scp>iii</scp>) complexes cyclometalated by 4-phenylthieno[3,2-c]quinoline ligands for phosphorescent OLEDs with external quantum efficiencies over 20%. Journal of Materials Chemistry C, 2017, 5, 10220-10224.	2.7	47
69	Covalent triazine framework-1 as adsorbent for inline solid phase extraction-high performance liquid chromatographic analysis of trace nitroimidazoles in porcine liver and environmental waters. Journal of Chromatography A, 2017, 1483, 40-47.	1.8	46
70	Asymmetric Isomer Effects in Benzo[<i>c</i>][1,2,5]thiadiazoleâ€Fused Nonacyclic Acceptors: Dielectric Constant and Molecular Crystallinity Control for Significant Photovoltaic Performance Enhancement. Advanced Functional Materials, 2021, 31, 2104369.	7.8	46
71	Simple organic donors based on halogenated oligothiophenes for all small molecule solar cells with efficiency over 11%. Journal of Materials Chemistry A, 2020, 8, 5843-5847.	5.2	43
72	Room temperature phosphorescence achieved by aromatic/perfluoroaromatic interactions. Science China Chemistry, 2022, 65, 918-925.	4.2	41

#	Article	IF	CITATIONS
73	Enhancing Spin–Orbit Coupling by Introducing a Lone Pair Electron with p Orbital Character in a Thermally Activated Delayed Fluorescence Emitter: Photophysics and Devices. Journal of Physical Chemistry Letters, 2019, 10, 2669-2675.	2.1	38
74	Effect of polymer chain conformation on field-effect transistor performance: synthesis and properties of two arylene imide based D–A copolymers. Journal of Materials Chemistry, 2012, 22, 14639.	6.7	37
75	Simultaneously increasing open-circuit voltage and short-circuit current to minimize the energy loss in organic solar cells <i>via</i> designing asymmetrical non-fullerene acceptor. Journal of Materials Chemistry A, 2019, 7, 11053-11061.	5.2	37
76	Highâ€Performance Circularly Polarized Electroluminescence with Simultaneous Narrowband Emission, High Efficiency, and Large Dissymmetry Factor. Advanced Materials, 2022, 34, e2109147.	11.1	37
77	A new building block, bis(thiophene vinyl)-pyrimidine, for constructing excellent two-photon absorption materials: synthesis, crystal structure and properties. Journal of Materials Chemistry, 2012, 22, 4343.	6.7	34
78	Narrowing the Electroluminescence Spectra of Multiresonance Emitters for High-Performance Blue OLEDs by a Peripheral Decoration Strategy. ACS Applied Materials & Interfaces, 2021, 13, 59035-59042.	4.0	34
79	High-performance blue and green electrophosphorescence achieved by using carbazole-containing bipolar tetraarylsilanes as host materials. Journal of Materials Chemistry, 2011, 21, 11197.	6.7	32
80	Triple Acceptors in a Polymeric Architecture for Balanced Ambipolar Transistors and Highâ€Gain Inverters. Advanced Materials, 2018, 30, e1801951.	11.1	32
81	An asymmetrical fused-ring electron acceptor designed by a cross-conceptual strategy achieving 15.6% efficiency. Journal of Materials Chemistry A, 2020, 8, 14583-14591.	5.2	32
82	Tuning the energy levels and photophysical properties of triphenylamine-featured iridium(iii) complexes: application in high performance polymer light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 11128.	6.7	31
83	A rational design of carbazole-based host materials with suitable spacer group towards highly-efficient blue phosphorescence. Journal of Materials Chemistry C, 2014, 2, 6387.	2.7	31
84	Theoretical study of excited states of <scp>DNA</scp> base dimers and tetramers using optimally tuned rangeâ€separated density functional theory. Journal of Computational Chemistry, 2016, 37, 684-693.	1.5	30
85	New organic dyes containing tert-Butyl-capped N-Arylcarbazole moiety for Dye-sensitized solar cells. RSC Advances, 2012, 2, 7081.	1.7	28
86	Different Effect of the Additional Electron-Withdrawing Cyano Group in Different Conjugation Bridge: The Adjusted Molecular Energy Levels and Largely Improved Photovoltaic Performance. ACS Applied Materials & Interfaces, 2016, 8, 12134-12140.	4.0	28
87	Asymmetric Difluoroboron Quinazolinoneâ€Pyridine Dyes with Large Stokes Shift: High Emission Efficiencies Both in Solution and in the Solid State. Chemistry - A European Journal, 2018, 24, 17897-17901.	1.7	28
88	Using Simple Fusedâ€Ring Thieno[2,3â€ <i>d</i>]pyrimidine to Construct Orange/Red Ir(III) Complexes: Highâ€Performance Red Organic Lightâ€Emitting Diodes with EQEs up to Nearly 28%. Advanced Optical Materials, 2018, 6, 1800108.	3.6	28
89	Simple thiazole-centered oligothiophene donor enables 15.4% efficiency all small molecule organic solar cells. Journal of Materials Chemistry A, 2022, 10, 3009-3017.	5.2	28
90	Rational design of perfectly oriented thermally activated delayed fluorescence emitter for efficient red electroluminescence. Science China Materials, 2021, 64, 920-930.	3.5	27

#	Article	IF	CITATIONS
91	Regulating exciton bonding energy and bulk heterojunction morphology in organic solar cells <i>via</i> methyl-functionalized non-fullerene acceptors. Journal of Materials Chemistry A, 2019, 7, 6809-6817.	5.2	26
92	Extending the π‧keleton of Multiâ€Resonance TADF Materials towards Highâ€Efficiency Narrowband Deepâ€Blue Emission. Angewandte Chemie, 2022, 134, .	1.6	25
93	Hg2Br3I: a new mixed halide nonlinear optical material in the infrared region. CrystEngComm, 2013, 15, 4196.	1.3	24
94	Aggregationâ€Induced Emission and Aggregationâ€Promoted Photoâ€oxidation in Thiopheneâ€Substituted Tetraphenylethylene Derivative. Chemistry - an Asian Journal, 2016, 11, 2932-2937.	1.7	24
95	A two-dimensional molecule with a large conjugation degree: synthesis, two-photon absorption and charge transport ability. Journal of Materials Chemistry C, 2017, 5, 5199-5206.	2.7	24
96	Symmetrical and unsymmetrical multibranched D–Ĩ€â€"A molecules based on 1,3,5-triazine unit: synthesis and photophysical properties. Journal of Materials Chemistry, 2012, 22, 16781.	6.7	23
97	Rational utilization of intramolecular and intermolecular hydrogen bonds to achieve desirable electron transporting materials with high mobility and high triplet energy. Journal of Materials Chemistry C, 2016, 4, 1482-1489.	2.7	23
98	Changing the shape of chromophores from "H-type―to "star-type― increasing the macroscopic NLO effects by a large degree. Polymer Chemistry, 2013, 4, 378-386.	1.9	21
99	Core Structure Engineering in Holeâ€īransport Materials to Achieve Highly Efficient Perovskite Solar Cells. ChemSusChem, 2019, 12, 1374-1380.	3.6	21
100	A promising new nonlinear optical crystal with high laser damage threshold for application in the IR region: synthesis, crystal structure and properties of noncentrosymmetric CsHgBr ₃ . Journal of Materials Chemistry C, 2014, 2, 6796-6801.	2.7	20
101	Enhancing the <i>J</i> _{SC} of P3HT-Based OSCs via a Thiophene-Fused Aromatic Heterocycle as a "l€-Bridge―for Aâ^ïl€â€"Dâ^'ï€â€"A-Type Acceptors. ACS Applied Materials & Interfaces, 2019, 11, 26005-26016.	4.0	19
102	Accurate Prediction for Dynamic Hybrid Local and Charge Transfer Excited States from Optimally Tuned Range-Separated Density Functionals. Journal of Physical Chemistry C, 2019, 123, 5616-5625.	1.5	19
103	Diaryl ketone-based hole-transporting materials for efficient perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 3226-3230.	2.7	19
104	Enantioselective Recognition for Carboxylic Acids by Novel Chiral Macrocyclic Polyamides Derived from L-/D-tartaric Acid. Supramolecular Chemistry, 2006, 18, 507-513.	1.5	18
105	Efficient Dyeâ€Sensitized Solar Cells with Potentialâ€Tunable Organic Sulfide Mediators and Grapheneâ€Modified Carbon Counter Electrodes. Advanced Functional Materials, 2013, 23, 3344-3352.	7.8	18
106	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie, 2021, 133, 7303-7309.	1.6	18
107	Unexpected fluorescent behavior of a 4-amino-1,8-naphthalimide derived $\hat{1}^2$ -cyclodextrin: conformation analysis and sensing properties. Chemical Communications, 2009, , 4091.	2.2	17
108	Fusedâ€Ring Core Engineering for Small Molecule Acceptors Enable Highâ€Performance Nonfullerene Polymer Solar Cells. Small Methods, 2019, 3, 1900280.	4.6	17

#	Article	IF	CITATIONS
109	Multichannel Strategies to Produce Stabilized Azaphenalene Diradicals: A Predictable Model to Generate Selfâ€Doped Cathode Interfacial Layers for Organic Photovoltaics. Advanced Functional Materials, 2019, 29, 1806125.	7.8	17
110	A deep-red emission fluorescent probe with long wavelength absorption for viscosity detection and live cell imaging. Analytical and Bioanalytical Chemistry, 2020, 412, 7819-7826.	1.9	17
111	Multi‣ayer ï€â€Stacked Molecules as Efficient Thermally Activated Delayed Fluorescence Emitters. Angewandte Chemie, 2021, 133, 5273-5279.	1.6	17
112	D–A–Aâ€Type Organic Dyes for NiOâ€Based Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2015, 2015, 6850-6857.	1.2	16
113	Iron(II) Chlorideâ€Catalyzed Nitrene Transfer Reaction for Dearomative Amination of βâ€Naphthols with Aryl Azides. Advanced Synthesis and Catalysis, 2018, 360, 4720-4725.	2.1	15
114	Ï€-Stacked Thermally Activated Delayed Fluorescence Emitters with Alkyl Chain Modulation. CCS Chemistry, 2021, 3, 1757-1763.	4.6	15
115	Synthesis and photovoltaic properties of twoâ€dimensional Dâ€A copolymers with conjugated side chains. Journal of Polymer Science Part A, 2011, 49, 3852-3862.	2.5	14
116	2,3â€bis(5â€Hexylthiophenâ€2â€y!)â€6,7â€bis(octyloxy)â€5,8â€di(thiophenâ€2â€yl) quinoxaline: A good const with adjustable role in the donorâ€l€â€acceptor system for bulkâ€heterojunction solar cells. Journal of Polymer Science Part A, 2012, 50, 2819-2828.	ruction blo 2.5	ock 14
117	Conjugated or Broken: The Introduction of Isolation Spacer ahead of the Anchoring Moiety and the Improved Device Performance. ACS Applied Materials & Interfaces, 2016, 8, 28652-28662.	4.0	14
118	Multifunctional asymmetrical molecules for high-performance perovskite and organic solar cells. Journal of Materials Chemistry A, 2019, 7, 2412-2420.	5.2	14
119	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. Angewandte Chemie, 2019, 131, 8608.	1.6	14
120	Highly Efficient Near-Infrared Photosensitizers with Aggregation-Induced Emission Characteristics: Rational Molecular Design and Photodynamic Cancer Cell Ablation. ACS Applied Bio Materials, 2021, 4, 5231-5239.	2.3	14
121	Carbazole-based D–A type hole transport materials to enhance the performance of perovskite solar cells. Sustainable Energy and Fuels, 2022, 6, 371-376.	2.5	14
122	Insights into dye design for efficient p-type photoelectrodes: effect of oligothiophene length between the donor and the NiO surface. RSC Advances, 2015, 5, 93652-93658.	1.7	13
123	Fluorescent nanofiber film based on a simple organogelator for highly efficient detection of TFA vapour. New Journal of Chemistry, 2018, 42, 2089-2093.	1.4	13
124	Rhodium-Catalyzed Successive C–H Bond Functionalizations To Synthesize Complex Indenols Bearing a Benzofuran Unit. Organic Letters, 2019, 21, 9598-9602.	2.4	13
125	Minimally Invasive Hemostatic Materials: Tackling a Dilemma of Fluidity and Adhesion by Photopolymerization in situ. Scientific Reports, 2017, 7, 15250.	1.6	12
126	Why Can High Chargeâ€Carrier Mobilities be Achieved Along Ï€â€Conjugated Polymer Chains with Alternating Donor–Acceptor Moieties?. Advanced Theory and Simulations, 2018, 1, 1800016.	1.3	12

#	Article	IF	CITATIONS
127	Chiral speciation of selenoamino acids in biological samples. Journal of Chromatography A, 2014, 1363, 62-70.	1.8	11
128	Fluorene-fused ladder-type non-fullerene small molecule acceptors for high-performance polymer solar cells. Materials Chemistry Frontiers, 2019, 3, 709-715.	3.2	11
129	A simple and effective strategy to lock the quasi-equatorial conformation of acridine by H–H repulsion for highly efficient thermally activated delayed fluorescence emitters. Chemical Communications, 2020, 56, 2308-2311.	2.2	11
130	Difluorinated Oligothiophenes for High‣fficiency All‣mallâ€Molecule Organic Solar Cells: Positional Isomeric Effect of Fluorine Substitution on Performance Variations. Solar Rrl, 2020, 4, 1900472.	3.1	11
131	Bipyrimidine core structure-based hole transport materials for efficient perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 5271-5276.	2.5	11
132	Dipyrrolylquinoxaline-bridged hydrazones: a new class of chemosensors for copper(II). Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 72, 79-88.	1.6	10
133	An asymmetric 2,3-fluoranthene imide building block for regioregular semiconductors with aggregation-induced emission properties. Chemical Science, 2022, 13, 996-1002.	3.7	10
134	The structural and photophysical properties of multibranched derivatives with curved conjugated aromatic cores. Journal of Materials Chemistry C, 2016, 4, 6054-6062.	2.7	9
135	Synthesis and properties of a series of quinoxaline-based copolymers: an example to understand the effect of the structure of the mainchain and sidechain on the charge transport ability of the polymers. Materials Chemistry Frontiers, 2017, 1, 2085-2093.	3.2	9
136	A new red fluorophore with aggregation enhanced emission by an unexpected "One-step―protocol. RSC Advances, 2018, 8, 18327-18333.	1.7	9
137	Superacid-catalyzed Friedel–Crafts polyhydroxyalkylation: a straightforward method to construct sky-blue thermally activated delayed fluorescence polymers. Polymer Chemistry, 2020, 11, 3481-3487.	1.9	9
138	Stabilization mechanism of arsenic-sulfide slag by density functional theory calculation of arsenic-sulfide clusters. Journal of Hazardous Materials, 2021, 410, 124567.	6.5	9
139	Rational design of near-infrared fluorophores with a phenolic D–A type structure and construction of a fluorescent probe for cysteine imaging. New Journal of Chemistry, 2021, 45, 18528-18537.	1.4	9
140	Dimers with thermally activated delayed fluorescence (TADF) emission in non-doped device. Journal of Materials Chemistry C, 2021, 9, 4792-4798.	2.7	9
141	Practical access to fluorescent 2,3-naphthalimide derivatives <i>via</i> didehydro-Diels–Alder reaction. Chemical Communications, 2021, 57, 5155-5158.	2.2	9
142	Gaseous cyclodextrin- <i>closo</i> -dodecaborate complexes χCD·B ₁₂ X ₁₂ ^{2â^²} (χ = α, β, and γ; X = F, Cl, Br, and I): electronic struct and intramolecular interactions. Physical Chemistry Chemical Physics, 2021, 23, 13447-13457.	ur e s3	8
143	Ester-substituted thiophene-fused benzothiadiazole as a strong electron acceptor to build D–A red emitters for highly efficient solution-processed OLEDs. Journal of Materials Chemistry C, 2022, 10, 1127-1135.	2.7	8
144	Microscopic progression in the free radical addition reaction: modeling, geometry, energy, and kinetics. Journal of Molecular Modeling, 2017, 23, 73.	0.8	7

#	Article	IF	CITATIONS
145	Organic Lightâ€Emitting Diodes: Achieving Nearly 30% External Quantum Efficiency for Orange–Red Organic Light Emitting Diodes by Employing Thermally Activated Delayed Fluorescence Emitters Composed of 1,8â€Naphthalimideâ€Acridine Hybrids (Adv. Mater. 5/2018). Advanced Materials, 2018, 30, 1870033.	11.1	7
146	Molybdenum(<scp>vi</scp>) tris(dithiolene) complexes as a new class of three-dimensional two-photon absorption chromophores at telecommunications wavelengths. Journal of Materials Chemistry C, 2014, 2, 614-617.	2.7	6
147	Theoretical and Experimental Study of Light-assisted Polymerization by Multimechanism Action. Scientific Reports, 2016, 6, 38473.	1.6	6
148	A novel 9 <i>H</i> -indeno[1,2- <i>b</i>]pyrazine-2,3-dicarbonitrile end group for an efficient non-fullerene small molecule acceptor. Journal of Materials Chemistry C, 2019, 7, 10111-10118.	2.7	6
149	Supramolecular CRISPR-OFF switches with host–guest chemistry. Nucleic Acids Research, 2022, 50, 1241-1255.	6.5	6
150	Two-dimensional copolymers with D–A type side chains for organic thin-film transistors: Synthesis and properties. Polymer Chemistry, 2011, 2, 2842.	1.9	5
151	A structurally ordered thiophene-thiazole copolymer for organic thin-film transistors. Science China Chemistry, 2012, 55, 760-765.	4.2	5
152	Hydrogen abstraction of carbon/phosphorus-containing radicals in photoassisted polymerization. RSC Advances, 2016, 6, 68952-68959.	1.7	5
153	Study of the Deformation/Interaction Model: How Interactions Increase the Reaction Barrier. Journal of Chemistry, 2018, 2018, 1-8.	0.9	5
154	Nâ€Heterocyclic Carbene Catalyzed [3+2] Annulations of βâ€Halocycloenals with Isatins and Mechanism Study. European Journal of Organic Chemistry, 2021, 2021, 983-989.	1.2	5
155	A Removable Acyl Group Promoted the Intramolecular Dehydro-Diels–Alder Reaction of Styrene-Ynes: Highly Chemoselective Synthesis of Aryldihydronaphthalene Derivatives. Journal of Organic Chemistry, 2022, 87, 6601-6611.	1.7	5
156	The structural, electronic, elastic and thermodynamic properties of V2AX (A = B, Al, Ga, In and TI; X = C) Tj ETQq	0 0 0 rgBT 1.0	⁻ /Oyerlock 10
157	Significantly enhanced thermal stability from a new kind of n-type organic semiconductor DFA4: a fully fused F8IC. Journal of Materials Chemistry C, 2021, 9, 13625-13629.	2.7	4
158	Plant Sterol Clustering Correlates with Membrane Microdomains as Revealed by Optical and Computational Microscopy. Membranes, 2021, 11, 747.	1.4	4
159	A Twoâ€Photon Dye with Favorable Photophysical Properties and Ultrahigh Polarity Sensitivity Designed by Utilizing the Tautomerism of βâ€Diketone. Advanced Optical Materials, 2017, 5, 1600696.	3.6	3
160	Branched <i>versus</i> linear: side-chain effect on fluorinated wide bandgap donors and their applications in organic solar cells. New Journal of Chemistry, 2020, 44, 753-760.	1.4	3
161	Computational Screening of Atomically Thin Two-Dimensional Nanomaterial-Coated Cs ₃ Sb Heterostructures for High-Performance Photocathodes. Journal of Physical Chemistry C, 2020, 124, 26396-26403.	1.5	3
162	Defluorination mechanism related to the activity of hydroxyl groups: A combined density functional theory calculations and experimental study. Chemical Engineering Journal, 2022, 437, 135342.	6.6	3

#	Article	IF	CITATIONS
163	One-step solution synthesis of a two-dimensional semiconducting covalent organometallic nanosheet <i>via</i> the condensation of boronic acid. RSC Advances, 2019, 9, 29327-29330.	1.7	2
164	Organic Field-Effect Transistors: Triple Acceptors in a Polymeric Architecture for Balanced Ambipolar Transistors and High-Gain Inverters (Adv. Mater. 32/2018). Advanced Materials, 2018, 30, 1870241.	11.1	0