Shouzhen Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6107385/publications.pdf

Version: 2024-02-01

147566 161609 3,167 84 31 54 citations g-index h-index papers 85 85 85 3274 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly sensitive and recyclable surface-enhanced Raman scattering (SERS) substrates based on photocatalytic activity of ZnSe nanowires. Sensors and Actuators B: Chemical, 2022, 356, 131360.	4.0	28
2	Indium Tin Oxide Nanowire Arrays as a Saturable Absorber for Mid-Infrared Er:Ca0.8Sr0.2F2 Laser. Nanomaterials, 2022, 12, 454.	1.9	2
3	Ultrafast photonics applications of emerging 2D-Xenes beyond graphene. Nanophotonics, 2022, 11, 1261-1284.	2.9	65
4	LSPR optical fiber sensor based on 3D gold nanoparticles with monolayer graphene as a spacer. Optics Express, 2022, 30, 10187.	1.7	17
5	Graphene Oxide-Coated Metal–Insulator–Metal SERS Substrates for Trace Melamine Detection. Nanomaterials, 2022, 12, 1202.	1.9	7
6	Composite substrate of graphene/Ag nanoparticles coupled with a multilayer film for surface-enhanced Raman scattering biosensing. Optics Express, 2022, 30, 13226.	1.7	11
7	Highly-sensitive sensor based on toroidal dipole governed by bound state in the continuum in dielectric non-coaxial core-shell cylinder. Optics Express, 2022, 30, 19030.	1.7	17
8	Advances in oxide semiconductors for surface enhanced Raman scattering. Applied Materials Today, 2022, 29, 101563.	2.3	6
9	Nonlinear regression: A possible solution to larger dynamic range for some spectrum-based optical sensors. Measurement: Journal of the International Measurement Confederation, 2022, 199, 111506.	2.5	2
10	Evolution of optical harmonic generation near bound-states in the continuum in hybrid plasmonic-photonic structures. Optics Express, 2022, 30, 26455.	1.7	6
11	High performance D-type plastic fiber SPR sensor based on a hyperbolic metamaterial composed of Ag/MgF ₂ . Journal of Materials Chemistry C, 2021, 9, 13647-13658.	2.7	25
12	Composite Structure Based on Gold-Nanoparticle Layer and HMM for Surface-Enhanced Raman Spectroscopy Analysis. Nanomaterials, 2021, 11, 587.	1.9	14
13	Manipulating the surface-enhanced Raman spectroscopy (SERS) activity and plasmon-driven catalytic efficiency by the control of Ag NP/graphene layers under optical excitation. Nanophotonics, 2021, 10, 1529-1540.	2.9	48
14	Optical fiber SPR biosensor complying with a 3D composite hyperbolic metamaterial and a graphene film. Photonics Research, 2021, 9, 379.	3.4	43
15	Surface-enhanced Raman scattering by the composite structure of Ag NP-multilayer Au films separated by Al ₂ O ₃ . Optics Express, 2021, 29, 8890.	1.7	24
16	Coupling of multiple plasma polarization modes in particles–multilayer film system for surface-enhanced Raman scattering. APL Photonics, 2021, 6, .	3.0	26
17	Plasmonically enhanced photoluminescence of monolayer MoS ₂ via nanosphere lithography-templated gold metasurfaces. Nanophotonics, 2021, 10, 1733-1740.	2.9	14
18	Highly efficient SERS substrates with different Ag interparticle nanogaps based on hyperbolic metamaterials. Applied Surface Science, 2021, 555, 149729.	3.1	29

#	Article	IF	CITATIONS
19	Noble metal modified ReS ₂ nanocavity for surface-enhanced Raman spectroscopy (SERS) analysis. Optics Express, 2021, 29, 28664.	1.7	7
20	Bulk plasmon polariton in hyperbolic metamaterials excited by multilayer nanoparticles for surface-enhanced Raman scattering (SERS) sensing. Nanophotonics, 2021, 10, 2949-2958.	2.9	26
21	Low-Threshold Nanolaser Based on Hybrid Plasmonic Waveguide Mode Supported by Metallic Grating Waveguide Structure. Nanomaterials, 2021, 11, 2555.	1.9	3
22	Integrated Ultrahigh-Sensitivity Temperature Sensor Based on Asymmetric Mach–Zehnder Interferometer and Stress Deformation of Aluminum-SiO ₂ . IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-7.	2.4	3
23	Broadband and Ultra-Low Threshold Optical Bistability in Guided-Mode Resonance Grating Nanostructures of Quasi-Bound States in the Continuum. Nanomaterials, 2021, 11, 2843.	1.9	8
24	Enhanced sensitivity of a surface plasmon resonance biosensor using hyperbolic metamaterial and monolayer graphene. Optics Express, 2021, 29, 43766.	1.7	13
25	Bi2Se3/mica optical modulator for high-energy mode-locked Er-doped fiber laser. Infrared Physics and Technology, 2020, 111, 103453.	1.3	10
26	Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations. Nanophotonics, 2020, 9, 2783-2795.	2.9	149
27	An Au Nanofilm-Graphene/D-Type Fiber Surface Plasmon Resonance Sensor for Highly Sensitive Specificity Bioanalysis. Sensors, 2020, 20, 991.	2.1	20
28	Facile In Situ Photochemical Synthesis of Silver Nanoaggregates for Surface-Enhanced Raman Scattering Applications. Nanomaterials, 2020, 10, 685.	1.9	11
29	Broadband indium tin oxide nanowire arrays as saturable absorbers for solid-state lasers. Optics Express, 2020, 28, 1554.	1.7	22
30	LSPR optical fiber biosensor based on a 3D composite structure of gold nanoparticles and multilayer graphene films. Optics Express, 2020, 28, 6071.	1.7	41
31	Aluminum nanoparticle films with an enhanced hot-spot intensity for high-efficiency SERS. Optics Express, 2020, 28, 9174.	1.7	26
32	Palladium diselenide as a direct absorption saturable absorber for ultrafast mode-locked operations: from all anomalous dispersion to all normal dispersion. Nanophotonics, 2020, 9, 4295-4306.	2.9	100
33	Preparation of Graphene/ITO Nanorod Metamaterial/U-Bent-Annealing Fiber Sensor and DNA Biomolecule Detection. Nanomaterials, 2019, 9, 1154.	1.9	20
34	Magnetic Graphene Field-Effect Transistor Biosensor for Single-Strand DNA Detection. Nanoscale Research Letters, 2019, 14, 248.	3.1	21
35	<i>In-situ</i> electrospun aligned and maize-like AgNPs/PVA@Ag nanofibers for surface-enhanced Raman scattering on arbitrary surface. Nanophotonics, 2019, 8, 1719-1729.	2.9	42
36	Graphene-Ag nanoparticles-cicada wings hybrid system for obvious SERS performance and DNA molecular detection. Optics Express, 2019, 27, 3000.	1.7	45

#	Article	IF	CITATIONS
37	Improved Laser Damage Threshold of In2Se3 Saturable Absorber by PVD for High-Power Mode-Locked Er-Doped Fiber Laser. Nanomaterials, 2019, 9, 1216.	1.9	28
38	170 mW-level mode-locked Er-doped fiber laser oscillator based on nonlinear polarization rotation. Applied Physics B: Lasers and Optics, 2019, 125, 1.	1.1	10
39	Versatile Mode-Locked Operations in an Er-Doped Fiber Laser with a Film-Type Indium Tin Oxide Saturable Absorber. Nanomaterials, 2019, 9, 701.	1.9	30
40	Third-order optical nonlinearity in silicon nitride films prepared using magnetron sputtering and application for optical bistability. Journal of Applied Physics, 2019, 125, .	1.1	17
41	Passively mode-locked dual-wavelength Er-doped fiber laser based on antimony tin oxide as saturable absorber. Laser Physics, 2019, 29, 045801.	0.6	7
42	Generation of high-energy rectangular pulses in a nonlinear polarization rotation mode-locked ring fiber laser. Applied Optics, 2019, 58, 7897.	0.9	8
43	Experimental and theoretical investigation for surface plasmon resonance biosensor based on graphene/Au film/D-POF. Optics Express, 2019, 27, 3483.	1.7	48
44	Output energy enhancement in a mode-locked Er-doped fiber laser using CVD-Bi2Se3 as a saturable absorber. Optics Express, 2019, 27, 24670.	1.7	42
45	3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis. Nanoscale, 2018, 10, 5897-5905.	2.8	145
46	Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots. Sensors and Actuators B: Chemical, 2018, 263, 408-416.	4.0	29
47	A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system. Sensors and Actuators B: Chemical, 2018, 261, 1-10.	4.0	41
48	Dark solitons in erbium-doped fiber lasers based on indium tin oxide as saturable absorbers. Optical Materials, 2018, 78, 432-437.	1.7	25
49	SERS activated platform with three-dimensional hot spots and tunable nanometer gap. Sensors and Actuators B: Chemical, 2018, 258, 163-171.	4.0	208
50	Reconfigurable Chiral Metasurface Absorbers Based on Liquid Crystals. IEEE Photonics Journal, 2018, 10, 1-9.	1.0	21
51	Recent Advances of Plasmonic Nanoparticles and their Applications. Materials, 2018, 11, 1833.	1.3	146
52	Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS ₂ as nanospacer for SERS analysis. Optics Express, 2018, 26, 21626.	1.7	45
53	Heterogeneous and cross-distributed metal structure hybridized with MoS ₂ as high-performance flexible SERS substrate. Optics Express, 2018, 26, 23831.	1.7	18
54	3D Hybrid Plasmonic Nanostructures with Dense Hot Spots Using Monolayer MoS ₂ as Subâ€Nanometer Spacer. Advanced Materials Interfaces, 2018, 5, 1800661.	1.9	14

#	Article	IF	CITATIONS
55	Constructing 3D and Flexible Plasmonic Structure for Highâ€Performance SERS Application. Advanced Materials Technologies, 2018, 3, 1800174.	3.0	65
56	3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS ₂ hybrid with pyramid structure. Optics Express, 2018, 26, 21546.	1.7	92
57	A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS ₂ @Ag nanoparticles@pyramidal silicon. RSC Advances, 2017, 7, 5764-5773.	1.7	45
58	A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure. Journal Physics D: Applied Physics, 2017, 50, 165105.	1.3	58
59	Reliable molecular trace-detection based on flexible SERS substrate of graphene/Ag-nanoflowers/PMMA. Sensors and Actuators B: Chemical, 2017, 249, 439-450.	4.0	83
60	Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications. Journal of Materials Chemistry C, 2017, 5, 3908-3915.	2.7	33
61	Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nature Communications, 2017, 8, 14902.	5.8	303
62	Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene–WS ₂ hybrid nanostructures and Au–Ag bimetallic film. RSC Advances, 2017, 7, 47177-47182.	1.7	50
63	A low lasing threshold and widely tunable spaser based on two dark surface plasmons. Scientific Reports, 2017, 7, 13590.	1.6	6
64	An unmodified graphene foam chemical sensor based on SVM for discrimination of chemical molecules with broad selectivity. RSC Advances, 2017, 7, 43560-43566.	1.7	3
65	Formation of large-area stretchable 3D graphene–nickel particle foams and their sensor applications. RSC Advances, 2017, 7, 35016-35026.	1.7	12
66	A new route for the synthesis of a Ag nanopore–inlay–nanogap structure: integrated Ag-core@graphene-shell@Ag-jacket nanoparticles for high-efficiency SERS detection. Chemical Communications, 2017, 53, 8691-8694.	2.2	11
67	Third-harmonic generation from gold nanowires of rough surface considering classical nonlocal effect. Optics Express, 2017, 25, 6372.	1.7	11
68	Indium tin oxide nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber laser. Optical Materials Express, 2017, 7, 3494.	1.6	38
69	Controlled-layer and large-area MoS_2 films encapsulated Au nanoparticle hybrids for SERS. Optics Express, 2016, 24, 26097.	1.7	36
70	Second Harmonic Generation from Ultrathin Gold Nanotubes. Plasmonics, 2016, 11, 1629-1636.	1.8	2
71	A sensitive 2D plasmon ruler based on Fano resonance. RSC Advances, 2016, 6, 81757-81762.	1.7	3
72	Evanescent Wave Absorption Sensor Based Tapered Plastic Optical Fiber Coated with Monolayer Graphene for Ethanol Molecules Detection. Chinese Journal of Chemistry, 2016, 34, 1039-1047.	2.6	16

#	Article	IF	Citations
73	High-quality monolayer graphene for bulk laser mode-locking near 2Âνm. Optical and Quantum Electronics, 2016, 48, 1.	1.5	45
74	WS_2/fluorine mica (FM) saturable absorbers for all-normal-dispersion mode-locked fiber laser. Optics Express, 2015, 23, 28698.	1.7	66
75	Monolayer graphene saturable absorber with sandwich structure for ultrafast solid-state laser. Optical Engineering, 2015, 55, 081304.	0.5	40
76	Graphene/Cu Nanoparticle Hybrids Fabricated by Chemical Vapor Deposition As Surface-Enhanced Raman Scattering Substrate for Label-Free Detection of Adenosine. ACS Applied Materials & Description of Interfaces, 2015, 7, 10977-10987.	4.0	157
77	Large-area MoS ₂ thin layers directly synthesized on Pyramid-Si substrate for surface-enhanced Raman scattering. RSC Advances, 2015, 5, 83899-83905.	1.7	28
78	Surfaceâ€Enhanced Raman Scattering Based on Controllableâ€Layer Graphene Shells Directly Synthesized on Cu Nanoparticles for Molecular Detection. ChemPhysChem, 2015, 16, 2953-2960.	1.0	21
79	High performance SERS active substrates fabricated by directly growing graphene on Ag nanoparticles. RSC Advances, 2015, 5, 90457-90465.	1.7	34
80	Facile synthesis 3D flexible core-shell graphene/glass fiber via chemical vapor deposition. Nanoscale Research Letters, 2014, 9, 394.	3.1	17
81	Graphene–silver nanowire hybrid films as electrodes for transparent and flexible loudspeakers. CrystEngComm, 2014, 16, 3532.	1.3	47
82	Influence of annealing times on morphological characteristics of ceramic thin films by RF-magnetron sputtering using Zn-enriched (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 ceramic target. Journal of Materials Science: Materials in Electronics, 2012, 23, 1159-1162.	1.1	1
83	Effects of annealing temperatures on crystalline quality of ceramic thin films by RF-magnetron sputtering using Zn-enriched (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 as target. Journal of Materials Science: Materials in Electronics, 2012, 23, 164-168.	1.1	5
84	Graphene-Covered Silver Nanoisland Array Coupling with Hyperbolic Metamaterials for SERS Sensing. ACS Applied Nano Materials, 0, , .	2.4	6