
Miri Barak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6107323/publications.pdf Version: 2024-02-01

Μίδι Βλάλκ

#	Article	IF	CITATIONS
1	The innovation level of engineering students' team projects in hybrid and MOOC environments. European Journal of Engineering Education, 2022, 47, 299-313.	2.3	9
2	Location-Based Learning and Its Effect on Students' Understanding of Newton's Laws of Motion. Journal of Science Education and Technology, 2022, 31, 403-413.	3.9	3
3	A cultural perspective to project-based learning and the cultivation of innovative thinking. Thinking Skills and Creativity, 2021, 39, 100766.	3.5	30
4	The validity and reliability of a tool for measuring educational innovative thinking competencies. Teaching and Teacher Education, 2021, 97, 103193.	3.2	6
5	Applying a Social Constructivist Approach to an Online Course on Ethics of Research. Science and Engineering Ethics, 2021, 27, 8.	2.9	8
6	An integrative conceptual model of innovation and innovative thinking based on a synthesis of a literature review. Thinking Skills and Creativity, 2021, 40, 100824.	3.5	8
7	Online vs. on-campus higher education: Exploring innovation in students' self-reports and students' learning products. Thinking Skills and Creativity, 2021, 42, 100965.	3.5	15
8	Establishing the validity and reliability of a modified tool for assessing innovative thinking of engineering students. Assessment and Evaluation in Higher Education, 2020, 45, 212-223.	5.6	24
9	Team diversity as a predictor of innovation in team projects of face-to-face and online learners. Computers and Education, 2020, 144, 103702.	8.3	45
10	Novice Researchers' Views About Online Ethics Education and the Instructional Design Components that May Foster Ethical Practice. Science and Engineering Ethics, 2020, 26, 1403-1421.	2.9	13
11	Teacher's withdrawal behavior: examining the impact of principals' innovative behavior and climate of organizational learning. International Journal of Educational Management, 2020, 34, 1339-1355.	1.5	7
12	Innovation in a MOOC: Project-Based Learning in the International Context. , 2020, , 639-653.		6
13	The innovation profile of nanotechnology team projects of face-to-face and online learners. Computers and Education, 2019, 137, 1-11.	8.3	27
14	AugmentedWorld. , 2019, , 141-159.		2
15	AugmentedWorld: Facilitating the creation of location-based questions. Computers and Education, 2018, 121, 89-99.	8.3	13
16	Are digital natives open to change? Examining flexible thinking and resistance to change. Computers and Education, 2018, 121, 115-123.	8.3	82
17	Motivating factors of MOOC completers: Comparing between university-affiliated students and general participants. Internet and Higher Education, 2018, 37, 11-20.	6.5	116
18	Peer assessment in a project-based engineering course: comparing between on-campus and online learning environments. Assessment and Evaluation in Higher Education, 2018, 43, 745-759.	5.6	61

Miri Barak

#	Article	IF	CITATIONS
19	Science Teacher Education in the Twenty-First Century: a Pedagogical Framework for Technology-Integrated Social Constructivism. Research in Science Education, 2017, 47, 283-303.	2.3	107
20	Cloud Pedagogy: Utilizing Web-Based Technologies for the Promotion of Social Constructivist Learning in Science Teacher Preparation Courses. Journal of Science Education and Technology, 2017, 26, 459-469.	3.9	20
21	Project-Based MOOC. Advances in Educational Technologies and Instructional Design Book Series, 2017, , 282-307.	0.2	6
22	Reflective Drawings as Means for Depicting ICTS Roles in Science and Engineering Learning in the 21st Century. , 2017, , 31-40.		2
23	On-campus or online: examining self-regulation and cognitive transfer skills in different learning settings. International Journal of Educational Technology in Higher Education, 2016, 13, .	7.6	53
24	Flexible thinking in learning: An individual differences measure for learning in technology-enhanced environments. Computers and Education, 2016, 99, 39-52.	8.3	72
25	A model of flexible thinking in contemporary education. Thinking Skills and Creativity, 2016, 22, 74-85.	3.5	29
26	Motivation to learn in massive open online courses: Examining aspects of language and social engagement. Computers and Education, 2016, 94, 49-60.	8.3	249
27	Closing the Gap Between Attitudes and Perceptions About ICT-Enhanced Learning Among Pre-service STEM Teachers. Journal of Science Education and Technology, 2014, 23, 1-14.	3.9	60
28	Students' Innovative Thinking and Their Perceptions About the Ideal Learning Environment. Springer Proceedings in Complexity, 2014, , 111-125.	0.3	9
29	Integrating Model-Based Learning and Animations for Enhancing Students' Understanding of Proteins Structure and Function. Research in Science Education, 2013, 43, 619-636.	2.3	37
30	Making the Unseen Seen: Integrating 3D Molecular Visualizations in Elementary, High School, and Higher Education. ACS Symposium Series, 2013, , 273-291.	0.5	7
31	Wandering: A Web-based platform for the creation of location-based interactive learning objects. Computers and Education, 2013, 62, 159-170.	8.3	67
32	Distance education: towards an organizational and cultural change in higher education. Journal of Enterprising Communities, 2012, 6, 124-137.	2.5	12
33	The use of visual semantic web for designing virtual expeditions. International Journal of Learning Technology, 2012, 7, 297.	0.2	0
34	Learning science via animated movies: Its effect on students' thinking and motivation. Computers and Education, 2011, 56, 839-846.	8.3	114
35	Science Education in Primary Schools: Is an Animation Worth a Thousand Pictures?. Journal of Science Education and Technology, 2011, 20, 608-620.	3.9	44
36	Enhancing Higher Order Thinking Skills Among Inservice Science Teachers Via Embedded Assessment. Journal of Science Teacher Education, 2009, 20, 459-474.	2.5	76

Miri Barak

#	Article	IF	CITATIONS
37	MOSAICA: A web-2.0 based system for the preservation and presentation of cultural heritage. Computers and Education, 2009, 53, 841-852.	8.3	53
38	Studio-based learning via wireless notebooks: a case of a Java programming course. International Journal of Mobile Learning and Organisation, 2007, 1, 15.	0.3	27
39	Transition from traditional to ICT-enhanced learning environments in undergraduate chemistry courses. Computers and Education, 2007, 48, 30-43.	8.3	99
40	The "Chemistry Is in the News" Project: Can a Workshop Induce a Pedagogical Change?. Journal of Chemical Education, 2007, 84, 1712.	2.3	7
41	Transforming an Introductory Programming Course: From Lectures to Active Learning via Wireless Laptops. Journal of Science Education and Technology, 2007, 16, 325-336.	3.9	33
42	Wireless Laptops as Means For Promoting Active Learning In Large Lecture Halls. Journal of Research on Technology in Education, 2006, 38, 245-263.	6.5	167
43	Enhancing undergraduate students' chemistry understanding through project-based learning in an IT environment. Science Education, 2005, 89, 117-139.	3.0	203
44	On-line question-posing and peer-assessment as means for web-based knowledge sharing in learning. International Journal of Human Computer Studies, 2004, 61, 84-103.	5.6	134
45	QSIA – a Web-based environment for learning, assessing and knowledge sharing in communities. Computers and Education, 2004, 43, 273-289.	8.3	80
46	A Web-Based Chemistry Course as a Means To Foster Freshmen Learning. Journal of Chemical Education, 2003, 80, 1084.	2.3	91
47	Lifelong Learning at the Technion: Graduate Students' Perceptions of and Experiences in Distance Learning. Interdisciplinary Journal of E-Skills and Lifelong Learning, 0, 8, 115-135.	0.0	9