
G William Rebeck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/610724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Independent <scp><i>APOE4</i></scp> knockâ€in mouse models display reduced brain <scp>APOE</scp> protein, altered neuroinflammation, and simplification of dendritic spines. Journal of Neurochemistry, 2022, 163, 247-259.	3.9	7
2	Expression and secretion of <scp>apoE</scp> isoforms in astrocytes and microglia during inflammation. Glia, 2021, 69, 1478-1493.	4.9	64
3	Low CD4+ cell count nadir exacerbates the impacts of APOE ε4 on functional connectivity and memory in adults with HIV. Aids, 2021, 35, 727-736.	2.2	14
4	Spatial inhibition of return is impaired in mild cognitive impairment and mild Alzheimer's disease. PLoS ONE, 2021, 16, e0252958.	2.5	2
5	High-fat diet increases gliosis and immediate early gene expression in APOE3 mice, but not APOE4 mice. Journal of Neuroinflammation, 2021, 18, 214.	7.2	19
6	Protective Effects of <i>APOE</i> ε2 Genotype on Cognition in Older Breast Cancer Survivors: The Thinking and Living With Cancer Study. JNCI Cancer Spectrum, 2021, 5, pkab013.	2.9	6
7	Impact of APOE Genotype on Diet-induced Mitochondrial Adaptations in Mouse Skeletal Muscle. Innovation in Aging, 2021, 5, 971-971.	0.1	0
8	O-glycosylation on cerebrospinal fluid and plasma apolipoprotein E differs in the lipid-binding domain. Glycobiology, 2020, 30, 74-85.	2.5	36
9	APOE in the normal brain. Neurobiology of Disease, 2020, 136, 104724.	4.4	84
10	ApoE Lipidation as a Therapeutic Target in Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 6336.	4.1	85
11	Cancer Chemotherapy Related Cognitive Impairment and the Impact of the Alzheimer's Disease Risk Factor APOE. Cancers, 2020, 12, 3842.	3.7	22
12	A mouse model of chemotherapy-related cognitive impairments integrating the risk factors of aging and APOE4 genotype. Behavioural Brain Research, 2020, 384, 112534.	2.2	14
13	APOE2 is associated with longevity independent of Alzheimerâ \in Ms disease. ELife, 2020, 9, .	6.0	33
14	The Synergistic Effects of APOE Genotype and Obesity on Alzheimer's Disease Risk. International Journal of Molecular Sciences, 2019, 20, 63.	4.1	40
15	Development of a Human APOE Knock-in Mouse Model for Study of Cognitive Function After Cancer Chemotherapy. Neurotoxicity Research, 2019, 35, 291-303.	2.7	25
16	Metabolic Disturbances of a High-Fat Diet Are Dependent on APOE Genotype and Sex. ENeuro, 2019, 6, ENEURO.0267-19.2019.	1.9	35
17	Abstract 667: A mouse model of APOE to define effects of doxorubicin on cognition. , 2019, , .		0
18	Highâ€density lipoprotein mimetic peptide 4F mitigates amyloidâ€Î²â€induced inhibition of apolipoprotein E secretion and lipidation in primary astrocytes and microglia. Journal of Neurochemistry, 2018, 147, 647-662.	3.9	31

#	Article	IF	CITATIONS
19	The role of APOE on lipid homeostasis and inflammation in normal brains. Journal of Lipid Research, 2017, 58, 1493-1499.	4.2	105
20	A mobile APP for sharing contacts on your cell. Journal of Neurochemistry, 2017, 143, 9-10.	3.9	1
21	[ICâ€Pâ€146]: TASKâ€FREE MAGNETIC RESONANCE BRAIN IMAGING DISTINGUISHES ALZHEIMER's DISEASE FROM HIVâ€DISEASE VIA SUPPORT VECTOR MACHINE CLASSIFICATION. Alzheimer's and Dementia, 2017, 13, P111.	м _{0.8}	0
22	[P1–373]: TASKâ€FREE MAGNETIC RESONANCE BRAIN IMAGING DISTINGUISHES ALZHEIMER's DISEASE FROM HIVâ€ÐISEASE VIA SUPPORT VECTOR MACHINE CLASSIFICATION. Alzheimer's and Dementia, 2017, 13, P404.	0.8	0
23	Reelin Proteolysis Affects Signaling Related to Normal Synapse Function and Neurodegeneration. Frontiers in Cellular Neuroscience, 2016, 10, 75.	3.7	26
24	Apolipoprotein E Genotype Affects Size of ApoE Complexes in Cerebrospinal Fluid. Journal of Neuropathology and Experimental Neurology, 2016, 75, 918-924.	1.7	53
25	Identification and modification of amyloid-independent phenotypes of APOE4 mice. Experimental Neurology, 2016, 280, 97-105.	4.1	23
26	Alzheimer's Disease Genetic Risk Factor APOE-ε4 Also Affects Normal Brain Function. Current Alzheimer Research, 2016, 13, 1200-1207.	1.4	78
27	APOE Genotype Alters Immunoglobulin Subtypes in Knock-In Mice. Journal of Alzheimer's Disease, 2015, 46, 365-374.	2.6	10
28	Genetics ignite focus on microglial inflammation in Alzheimer's disease. Molecular Neurodegeneration, 2015, 10, 52.	10.8	128
29	Very low density lipoprotein receptor regulates dendritic spine formation in a RasGRF1/CaMKII dependent manner. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 904-917.	4.1	25
30	Extracellular Proteolysis of Apolipoprotein E (apoE) by Secreted Serine Neuronal Protease. PLoS ONE, 2014, 9, e93120.	2.5	33
31	Fyn Tyrosine Kinase Increases Apolipoprotein E Receptor 2 Levels and Phosphorylation. PLoS ONE, 2014, 9, e110845.	2.5	2
32	Aging reduces glial uptake and promotes extracellular accumulation of Aβ from a lentiviral vector. Frontiers in Aging Neuroscience, 2014, 6, 210.	3.4	22
33	Two Alzheimerââ,¬â"¢s disease risk genes increase entorhinal cortex volume in young adults. Frontiers in Human Neuroscience, 2014, 8, 779.	2.0	20
34	A combined effect of two Alzheimer's risk genes on medial temporal activity during executive attention in young adults. Neuropsychologia, 2014, 56, 1-8.	1.6	26
35	Soluble apoE/AÎ ² complex: mechanism and therapeutic target for APOE4-induced AD risk. Molecular Neurodegeneration, 2014, 9, 2.	10.8	98
36	Human APOE genotype affects intraneuronal AÂ1-42 accumulation in a lentiviral gene transfer model. Human Molecular Genetics, 2014, 23, 1365-1375.	2.9	35

#	Article	IF	CITATIONS
37	Ligand-induced Homotypic and Heterotypic Clustering of Apolipoprotein E Receptor 2. Journal of Biological Chemistry, 2014, 289, 15894-15903.	3.4	24
38	A geneâ~'brainâ~'cognition pathway for the effect of an Alzheimer׳s risk gene on working memory in young adults. Neuropsychologia, 2014, 61, 143-149.	1.6	19
39	Human APOE4 increases microglia reactivity at AÎ ² plaques in a mouse model of AÎ ² deposition. Journal of Neuroinflammation, 2014, 11, 111.	7.2	144
40	Age-related loss of noradrenergic neurons in the brains of triple transgenic mice. Age, 2013, 35, 139-147.	3.0	43
41	<scp>APOE</scp> genotype affects the preâ€synaptic compartment of glutamatergic nerve terminals. Journal of Neurochemistry, 2013, 124, 4-14.	3.9	50
42	APOE-Îμ2 and APOE-Îμ4 Correlate With Increased Amyloid Accumulation in Cerebral Vasculature. Journal of Neuropathology and Experimental Neurology, 2013, 72, 708-715.	1.7	94
43	ApoE4 Delays Dendritic Spine Formation during Neuron Development and Accelerates Loss of Mature Spines <i>in Vitro</i> . ASN Neuro, 2013, 6, AN20130043.	2.7	31
44	Young APOE4 targeted replacement mice exhibit poor spatial learning and memory, with reduced dendritic spine density in the medial entorhinal cortex. Learning and Memory, 2013, 20, 256-266.	1.3	107
45	Reelin supplementation recovers sensorimotor gating, synaptic plasticity and associative learning deficits in the heterozygous reeler mouse. Journal of Psychopharmacology, 2013, 27, 386-395.	4.0	77
46	Fyn knock-down increases Aβ, decreases phospho-tau, and worsens spatial learning in 3×Tg-AD mice. Neurobiology of Aging, 2012, 33, 825.e15-825.e24.	3.1	21
47	APOE4-specific Changes in Aβ Accumulation in a New Transgenic Mouse Model of Alzheimer Disease. Journal of Biological Chemistry, 2012, 287, 41774-41786.	3.4	213
48	FE65 as a link between VLDLR and APP to regulate their trafficking and processing. Molecular Neurodegeneration, 2012, 7, 9.	10.8	28
49	Wild type TDP-43 induces neuro-inflammation and alters APP metabolism in lentiviral gene transfer models. Experimental Neurology, 2012, 235, 297-305.	4.1	43
50	APOE genotype alters glial activation and loss of synaptic markers in mice. Glia, 2012, 60, 559-569.	4.9	186
51	Modulation of ABCA1 by an LXR Agonist Reduces Beta-Amyloid Levels and Improves Outcome after Traumatic Brain Injury. Journal of Neurotrauma, 2011, 28, 225-236.	3.4	54
52	ApoE Receptor 2 Regulates Synapse and Dendritic Spine Formation. PLoS ONE, 2011, 6, e17203.	2.5	43
53	Fyn kinase regulates the association between amyloid precursor protein and Dab1 by promoting their localization to detergentâ€resistant membranes. Journal of Neurochemistry, 2011, 118, 879-890.	3.9	17
54	β-Amyloid triggers ALS-associated TDP-43 pathology in AD models. Brain Research, 2011, 1386, 191-199.	2.2	58

#	Article	IF	CITATIONS
55	Decreased dendritic spine density and abnormal spine morphology in Fyn knockout mice. Brain Research, 2011, 1415, 96-102.	2.2	34
56	Similarities and differences in structure, expression, and functions of VLDLR and ApoER2. Molecular Neurodegeneration, 2011, 6, 30.	10.8	71
57	Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine density. Learning and Memory, 2011, 18, 558-564.	1.3	157
58	Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated AÂ in AD models. Human Molecular Genetics, 2011, 20, 2091-2102.	2.9	156
59	24S-hydroxycholesterol effects on lipid metabolism genes are modeled in traumatic brain injury. Brain Research, 2010, 1319, 1-12.	2.2	28
60	ApoE mimetic peptide decreases AÎ ² production in vitro and in vivo. Molecular Neurodegeneration, 2010, 5, 16.	10.8	22
61	The cytoplasmic adaptor protein X11α and extracellular matrix protein Reelin regulate ApoE receptor 2 trafficking and cell movement. FASEB Journal, 2010, 24, 58-69.	0.5	26
62	Therapeutic versus neuroinflammatory effects of passive immunization is dependent on Aβ/amyloid burden in a transgenic mouse model of Alzheimer's disease. Journal of Neuroinflammation, 2010, 7, 57.	7.2	18
63	Intracellular cholesterol homeostasis and amyloid precursor protein processing. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 853-859.	2.4	32
64	Iowa Variant of Familial Alzheimer's Disease. American Journal of Pathology, 2010, 176, 1841-1854.	3.8	49
65	β-Amyloid1–42 Gene Transfer Model Exhibits Intraneuronal Amyloid, Gliosis, Tau Phosphorylation, and Neuronal Loss. Journal of Biological Chemistry, 2010, 285, 7440-7446.	3.4	53
66	The Effects of Amyloid Precursor Protein on Postsynaptic Composition and Activity. Journal of Biological Chemistry, 2009, 284, 8495-8506.	3.4	101
67	Parkin promotes intracellular AÂ1-42 clearance. Human Molecular Genetics, 2009, 18, 3206-3216.	2.9	89
68	Nontraditional Signaling Mechanisms of Lipoprotein Receptors. Science Signaling, 2009, 2, pe28.	3.6	6
69	Interaction of Reelin with Amyloid Precursor Protein Promotes Neurite Outgrowth. Journal of Neuroscience, 2009, 29, 7459-7473.	3.6	182
70	Microglial low-density lipoprotein receptor-related protein 1 modulates c-Jun N-terminal kinase activation. Journal of Neuroimmunology, 2009, 214, 25-32.	2.3	48
71	Lowâ€density lipoprotein receptors regulate microglial inflammation through câ€Jun Nâ€ŧerminal kinase. Glia, 2009, 57, 444-453.	4.9	79
72	Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury. Nature Medicine, 2009, 15, 377-379.	30.7	219

#	Article	IF	CITATIONS
73	Inhibition of c-Jun N-terminal kinase increases apoE expression in vitro and in vivo. Biochemical and Biophysical Research Communications, 2009, 387, 516-520.	2.1	20
74	No cross-sectional influence of APOE ɛ4 dose on clinical tests in Alzheimer's disease. Neurobiology of Aging, 2009, 30, 1327-1328.	3.1	2
75	Levels of soluble and insoluble tau reflect overall status of tau phosphorylation in vivo. Neuroscience Letters, 2009, 450, 51-55.	2.1	12
76	ApoE4 Decreases Spine Density and Dendritic Complexity in Cortical Neurons <i>In Vivo</i> . Journal of Neuroscience, 2009, 29, 15317-15322.	3.6	195
77	Regulated Proteolysis of APP and ApoE Receptors. Molecular Neurobiology, 2008, 37, 64-72.	4.0	21
78	Functional interactions of APP with the apoE receptor family. Journal of Neurochemistry, 2008, 106, 2263-2271.	3.9	35
79	Females exhibit more extensive amyloid, but not tau, pathology in an Alzheimer transgenic model. Brain Research, 2008, 1216, 92-103.	2.2	239
80	Cortical Injury Increases Cholesterol 24S Hydroxylase (Cyp46) Levels in the Rat Brain. Journal of Neurotrauma, 2008, 25, 1087-1098.	3.4	54
81	Fyn Modulation of Dab1 Effects on Amyloid Precursor Protein and ApoE Receptor 2 Processing. Journal of Biological Chemistry, 2008, 283, 6288-6299.	3.4	47
82	Tarenflurbil Protection from Cytotoxicity is Associated with an Upregulation of Neurotrophins. Journal of Alzheimer's Disease, 2008, 15, 397-407.	2.6	18
83	The Metalloprotease Inhibitor TIMP-3 Regulates Amyloid Precursor Protein and Apolipoprotein E Receptor Proteolysis. Journal of Neuroscience, 2007, 27, 10895-10905.	3.6	67
84	Regulation of central nervous system cholesterol homeostasis by the liver X receptor agonist TO-901317. Neuroscience Letters, 2007, 423, 47-52.	2.1	33
85	Cholesterol independent effect of LXR agonist TOâ€901317 on gammaâ€secretase. Journal of Neurochemistry, 2007, 101, 929-936.	3.9	26
86	DAB1 and Reelin Effects on Amyloid Precursor Protein and ApoE Receptor 2 Trafficking and Processing. Journal of Biological Chemistry, 2006, 281, 35176-35185.	3.4	143
87	The generation and function of soluble apoE receptors in the CNS. Molecular Neurodegeneration, 2006, 1, 15.	10.8	53
88	Apolipoprotein E decreases tau kinases and phospho-tau levels in primary neurons. Molecular Neurodegeneration, 2006, 1, 18.	10.8	33
89	The effects of ABCA1 on cholesterol efflux and Aβ levels <i>in vitro</i> and <i>in vivo</i> . Journal of Neurochemistry, 2006, 98, 792-800.	3.9	101
90	Effects of apoE on neuronal signaling and APP processing in rodent brain. Brain Research, 2006, 1112, 70-79.	2.2	27

#	Article	IF	CITATIONS
91	Apolipoprotein E Receptor 2 Interactions with the N-Methyl-D-aspartate Receptor. Journal of Biological Chemistry, 2006, 281, 3425-3431.	3.4	82
92	FE65 Interaction with the ApoE Receptor ApoEr2. Journal of Biological Chemistry, 2006, 281, 24521-24530.	3.4	65
93	Kinetics of Cerebral Amyloid Angiopathy Progression in a Transgenic Mouse Model of Alzheimer Disease. Journal of Neuroscience, 2006, 26, 365-371.	3.6	69
94	Multiple pathways of apolipoprotein E signaling in primary neurons. Journal of Neurochemistry, 2005, 93, 145-155.	3.9	109
95	Association of apolipoprotein J-positive β-amyloid plaques with dystrophic neurites in alzheimer's disease brain. Neurotoxicity Research, 2005, 7, 231-241.	2.7	43
96	F-Spondin Interaction with the Apolipoprotein E Receptor ApoEr2 Affects Processing of Amyloid Precursor Protein. Molecular and Cellular Biology, 2005, 25, 9259-9268.	2.3	105
97	Progression of Cerebral Amyloid Angiopathy in Transgenic Mouse Models of Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2005, 64, 588-594.	1.7	54
98	Regulation of ApoE receptor proteolysis by ligand binding. Molecular Brain Research, 2005, 137, 31-39.	2.3	91
99	Apolipoprotein E Receptors Mediate Neurite Outgrowth through Activation of p44/42 Mitogen-activated Protein Kinase in Primary Neurons. Journal of Biological Chemistry, 2004, 279, 34948-34956.	3.4	89
100	Apolipoprotein E modulates γâ€secretase cleavage of the amyloid precursor protein. Journal of Neurochemistry, 2004, 90, 1132-1143.	3.9	85
101	Cholesterol Efflux as a Critical Component of Alzheimer's Disease Pathogenesis. Journal of Molecular Neuroscience, 2004, 23, 219-224.	2.3	41
102	Clinical manifestations of cerebral amyloid angiopathy-related inflammation. Annals of Neurology, 2004, 55, 250-256.	5.3	362
103	Lack of association of the cholesterol 24-hydroxylase (CYP46) intron 2 polymorphism with Alzheimer's disease. Neuroscience Letters, 2004, 367, 228-231.	2.1	36
104	Aβ species, including IsoAsp23 Aβ, in Iowa-type familial cerebral amyloid angiopathy. Acta Neuropathologica, 2003, 105, 252-258.	7.7	30
105	Lipoprotein receptor–mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nature Medicine, 2003, 9, 1313-1317.	30.7	434
106	ApoE isoforms affect neuronal N-methyl-d-aspartate calcium responses and toxicity via receptor-mediated processes. Neuroscience, 2003, 122, 291-303.	2.3	84
107	APOE ε3/ε4 heterozygotes have an elevated proportion of apolipoprotein E4 in cerebrospinal fluid relative to plasma, independent of Alzheimer's disease diagnosis. Experimental Neurology, 2003, 183, 249-253.	4.1	63
108	Induction of the Cholesterol Transporter ABCA1 in Central Nervous System Cells by Liver X Receptor Agonists Increases Secreted AÎ ² Levels. Journal of Biological Chemistry, 2002, 277, 48508-48513.	3.4	139

#	Article	IF	CITATIONS
109	α2-Macroglobulin Exposure Reduces Calcium Responses to N-Methyl-d-Aspartate via Low Density Lipoprotein Receptor-related Protein in Cultured Hippocampal Neurons. Journal of Biological Chemistry, 2002, 277, 14458-14466.	3.4	68
110	LRP and senile plaques in Alzheimer's disease: colocalization with apolipoprotein E and with activated astrocytes. Molecular Brain Research, 2002, 104, 38-46.	2.3	77
111	Lack of association of two lipoprotein lipase polymorphisms with Alzheimer's disease. Neuroscience Letters, 2002, 328, 109-112.	2.1	20
112	Apolipoprotein E and Alzheimer's disease: The protective effects of ApoE2 and E3. Journal of Alzheimer's Disease, 2002, 4, 145-154.	2.6	84
113	Low-density lipoprotein receptor-related protein levels and endocytic function are reduced by overexpression of the FE65 adaptor protein, FE65L1. Journal of Neurochemistry, 2002, 82, 755-762.	3.9	21
114	α2-Macroglobulin Enhances the Clearance of Endogenous Soluble β-Amyloid Peptide via Low-Density Lipoprotein Receptor-Related Protein in Cortical Neuron. Journal of Neurochemistry, 2002, 73, 1393-1398.	3.9	122
115	Vascular Changes in Iowaâ€Ţype Hereditary Cerebral Amyloid Angiopathy. Annals of the New York Academy of Sciences, 2002, 977, 245-251.	3.8	18
116	Elevation of Cystatin C in Susceptible Neurons in Alzheimer's Disease. American Journal of Pathology, 2001, 159, 1061-1068.	3.8	104
117	Demonstration by Fluorescence Resonance Energy Transfer of Two Sites of Interaction between the Low-Density Lipoprotein Receptor-Related Protein and the Amyloid Precursor Protein: Role of the Intracellular Adapter Protein Fe65. Journal of Neuroscience, 2001, 21, 8354-8361.	3.6	131
118	Elevation of LDL Receptor-Related protein Levels via Ligand Interactions in Alzheimer Disease and In Vitro. Journal of Neuropathology and Experimental Neurology, 2001, 60, 430-440.	1.7	36
119	Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Annals of Neurology, 2001, 49, 697-705.	5.3	481
120	No evidence for genetic association or linkage of the cathepsin D (CTSD) exon 2 polymorphism and Alzheimer disease. Annals of Neurology, 2001, 49, 114-116.	5.3	29
121	Pathogenic Effects of D23N Iowa Mutant Amyloid β-Protein. Journal of Biological Chemistry, 2001, 276, 32860-32866.	3.4	214
122	Quantitation of apoE Domains in Alzheimer Disease Brain Suggests a Role for apoE in Aß Aggregation. Journal of Neuropathology and Experimental Neurology, 2001, 60, 342-349.	1.7	100
123	Notch1 and Amyloid Precursor Protein Are Competitive Substrates for Presenilin1-dependent Î ³ -Secretase Cleavage. Journal of Biological Chemistry, 2001, 276, 30018-30023.	3.4	71
124	Plasma βâ€Amyloid Peptide, Transforming Growth Factorâ€Î²1, and Risk for Cerebral Amyloid Angiopathy. Annals of the New York Academy of Sciences, 2000, 903, 144-149.	3.8	31
125	Apolipoprotein E affects the amount, form, and anatomical distribution of amyloid β-peptide deposition in homozygous APP V717F transgenic mice. Acta Neuropathologica, 2000, 100, 451-458.	7.7	85
126	Role of the Low-density Lipoprotein Receptor–Related Protein in β-Amyloid Metabolism and Alzheimer Disease. Archives of Neurology, 2000, 57, 646.	4.5	105

#	Article	IF	CITATIONS
127	Progression of Cerebral Amyloid Angiopathy: Accumulation of Amyloid-ß40 in Affected Vessels. Journal of Neuropathology and Experimental Neurology, 1998, 57, 353-359.	1.7	164
128	Epidemiological, Clinical, and Neuropathological Study of Apolipoprotein E Genotype in Alzheimer's Disease. Annals of the New York Academy of Sciences, 1996, 802, 1-5.	3.8	66
129	Expression of the Very Low-Density Lipoprotein Receptor (VLDL-r), an Apolipoprotein-E Receptor, in the Central Nervous System and in Alzheimer's Disease. Journal of Neuropathology and Experimental Neurology, 1996, 55, 491.	1.7	97
130	Clinical and pathological correlates of apolipoprotein E ε4 in Alzheimer's disease. Annals of Neurology, 1996, 39, 62-70.	5.3	380
131	Lack of association of trinucleotide repeat polymorphisms in the very-low-density lipoprotein receptor gene with Alzhelner's disease. Annals of Neurology, 1996, 39, 800-803.	5.3	30
132	Multiple, diverse senile plaque-associated proteins are ligands of an apolipoprotein e receptor, the ?2-macroglobulin receptor/low-density-lipoprotein receptor?related protein. Annals of Neurology, 1995, 37, 211-217.	5.3	304
133	Cerebrospinal fluid levels of amyloid βâ€protein in alzheimer's disease: Inverse correlation with severity of dementia and effect of apolipoprotein e genotype. Annals of Neurology, 1995, 37, 512-518.	5.3	117
134	Apolipoprotein E ϵ4 and cerebral hemorrhage associated with amyloid angiopathy. Annals of Neurology, 1995, 38, 254-259.	5.3	488
135	Apolipoprotein E ?4 allele is not associated with earlier age at onset in amyotrophic lateral sclerosis. Annals of Neurology, 1995, 38, 460-463.	5.3	80
136	?2-Macroglobulin Receptor/Low Density Lipoprotein Receptor?Related Protein Annals of the New York Academy of Sciences, 1994, 737, 88-95.	3.8	12
137	Frequency of the apolipoprotein E ε2 allele is diminished in sporadic Alzheimer disease. Neuroscience Letters, 1994, 175, 46-48.	2.1	119
138	Chapter 30 Functional integrity of neural systems related to memory in Alzheimer's disease. Progress in Brain Research, 1994, 100, 245-254.	1.4	5
139	Apolipoprotein E in sporadic Alzheimer's disease: Allelic variation and receptor interactions. Neuron, 1993, 11, 575-580.	8.1	1,057