List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6107233/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | High-Performance White Light-Emitting Diodes over 150 lm/W Using Near-Unity-Emitting Quantum Dots<br>in a Liquid Matrix. ACS Photonics, 2022, 9, 1304-1314.                                                                                      | 3.2 | 18        |
| 2  | Mechanical reinforcement and memory effect of strain-induced soft segment crystals in thermoplastic polyurethane-urea elastomers. Polymer, 2021, 223, 123708.                                                                                    | 1.8 | 26        |
| 3  | Geometric Confinement Controls Stiffness, Strength, Extensibility, and Toughness in<br>Poly(urethane–urea) Copolymers. Macromolecules, 2021, 54, 4704-4725.                                                                                      | 2.2 | 5         |
| 4  | 3D Printed Biodegradable Polyurethaneurea Elastomer Recapitulates Skeletal Muscle Structure and Function. ACS Biomaterials Science and Engineering, 2021, 7, 5189-5205.                                                                          | 2.6 | 14        |
| 5  | Stiff, Strong, Tough, and Highly Stretchable Hydrogels Based on Dual Stimuli-Responsive<br>Semicrystalline Poly(urethane–urea) Copolymers. ACS Applied Polymer Materials, 2021, 3, 5683-5695.                                                    | 2.0 | 4         |
| 6  | Influence of hydrogen bond on the mesomorphic behaviour in urethane based liquid crystalline compounds: Experimental and computer simulation study. Journal of Molecular Liquids, 2020, 317, 114001.                                             | 2.3 | 4         |
| 7  | 3D printed poly(lactic acid) scaffolds modified with chitosan and hydroxyapatite for bone repair applications. Materials Today Communications, 2020, 25, 101515.                                                                                 | 0.9 | 25        |
| 8  | A coarse grained simulation study on the morphology of ABA triblock copolymers. Computational Materials Science, 2019, 167, 160-167.                                                                                                             | 1.4 | 4         |
| 9  | Electrospun polycaprolactone/silk fibroin nanofibrous bioactive scaffolds for tissue engineering applications. Polymer, 2019, 168, 86-94.                                                                                                        | 1.8 | 74        |
| 10 | Effect of surface modification of colloidal silica nanoparticles on the rigid amorphous fraction and<br>mechanical properties of amorphous polyurethane–urea–silica nanocomposites. Journal of Polymer<br>Science Part A, 2019, 57, 2543-2556.   | 2.5 | 7         |
| 11 | Critical parameters controlling the properties of monolithic poly(lactic acid) foams prepared by thermally induced phase separation. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 98-108.                                      | 2.4 | 12        |
| 12 | Reversible switching of wetting properties and erasable patterning of polymer surfaces using plasma oxidation and thermal treatment. Applied Surface Science, 2018, 441, 841-852.                                                                | 3.1 | 20        |
| 13 | Preparation of monolithic polycaprolactone foams with controlled morphology. Polymer, 2018, 136, 166-178.                                                                                                                                        | 1.8 | 27        |
| 14 | Temperatureâ€dependent changes in the hydrogen bonded hard segment network and microphase<br>morphology in a model polyurethane: Experimental and simulation studies. Journal of Polymer<br>Science, Part B: Polymer Physics, 2018, 56, 182-192. | 2.4 | 31        |
| 15 | Effect of filler content on the structureâ€property behavior of poly(ethylene oxide) based<br>polyurethaneureaâ€silica nanocomposites. Polymer Engineering and Science, 2018, 58, 1097-1107.                                                     | 1.5 | 15        |
| 16 | Spontaneous formation of microporous poly(lactic acid) coatings. Progress in Organic Coatings, 2018, 125, 249-256.                                                                                                                               | 1.9 | 15        |
| 17 | Wetting behavior of superhydrophobic poly(methyl methacrylate). Progress in Organic Coatings, 2018, 125, 530-536.                                                                                                                                | 1.9 | 18        |

18 All-protein 3D coffee stain lasers. , 2018, , .

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Eco-friendly Silk-hydrogel Lenses for LEDs. , 2018, , .                                                                                                                                                                           |      | Ο         |
| 20 | Effect of soft segment molecular weight on the glass transition, crystallinity, molecular mobility<br>and segmental dynamics of poly(ethylene oxide) based poly(urethane–urea) copolymers. RSC Advances,<br>2017, 7, 40745-40754. | 1.7  | 15        |
| 21 | 3D coffee stains. Materials Chemistry Frontiers, 2017, 1, 2360-2367.                                                                                                                                                              | 3.2  | 9         |
| 22 | Intercalated chitosan/hydroxyapatite nanocomposites: Promising materials for bone tissue engineering applications. Carbohydrate Polymers, 2017, 175, 38-46.                                                                       | 5.1  | 130       |
| 23 | Silk-hydrogel Lenses for Light-emitting Diodes. Scientific Reports, 2017, 7, 7258.                                                                                                                                                | 1.6  | 37        |
| 24 | Effect of reaction solvent on hydroxyapatite synthesis in sol–gel process. Royal Society Open Science, 2017, 4, 171098.                                                                                                           | 1.1  | 24        |
| 25 | Biocompatibilità e durata in vivo di cinque nuovi polimeri sintetici testati su coniglio. Acta<br>Otorhinolaryngologica Italica, 2016, 36, 101-106.                                                                               | 0.7  | 2         |
| 26 | Effect of intersegmental interactions on the morphology of segmented polyurethanes with mixed soft segments: A coarse-grained simulation study. Polymer, 2016, 90, 204-214.                                                       | 1.8  | 44        |
| 27 | Simple processes for the preparation of superhydrophobic polymer surfaces. Polymer, 2016, 99, 580-593.                                                                                                                            | 1.8  | 23        |
| 28 | Fabrication of rigid poly(lactic acid) foams via thermally induced phase separation. Polymer, 2016, 107, 240-248.                                                                                                                 | 1.8  | 61        |
| 29 | Discovery of Superior Cuâ€GaO <sub><i>x</i></sub> â€HoO <sub><i>y</i></sub> Catalysts for the Reduction of Carbon Dioxide to Methanol at Atmospheric Pressure. ChemCatChem, 2016, 8, 1464-1469.                                   | 1.8  | 19        |
| 30 | Synthesis and structure-property behavior of<br>polycaprolactone-polydimethylsiloxane-polycaprolactone triblock copolymers. Polymer, 2016, 83,<br>138-153.                                                                        | 1.8  | 32        |
| 31 | Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer, 2015, 58, A1-A36.                                                                        | 1.8  | 439       |
| 32 | Influence of the average surface roughness on the formation of superhydrophobic polymer surfaces through spin-coating with hydrophobic fumed silica. Polymer, 2015, 62, 118-128.                                                  | 1.8  | 83        |
| 33 | Influence of the coating method on the formation of superhydrophobic silicone–urea surfaces modified with fumed silica nanoparticles. Progress in Organic Coatings, 2015, 84, 143-152.                                            | 1.9  | 37        |
| 34 | Silicone containing copolymers: Synthesis, properties and applications. Progress in Polymer Science, 2014, 39, 1165-1195.                                                                                                         | 11.8 | 397       |
| 35 | Understanding the influence of hydrogen bonding and diisocyanate symmetry on the morphology and properties of segmented polyurethanes and polyureas: Computational and experimental study. Polymer, 2014, 55, 4563-4576.          | 1.8  | 120       |
| 36 | Effects of solvent on TEOS hydrolysis kinetics and silica particle size under basic conditions. Journal of Sol-Gel Science and Technology, 2013, 67, 351-361.                                                                     | 1.1  | 58        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Hydrophilization of silicone–urea copolymer surfaces by UV/ozone: Influence of PDMS molecular<br>weight on surface oxidation and hydrophobic recovery. Polymer, 2013, 54, 6665-6675.                                                       | 1.8 | 20        |
| 38 | Polyurethaneurea–silica nanocomposites: Preparation and investigation of the structure–property behavior. Polymer, 2013, 54, 5310-5320.                                                                                                    | 1.8 | 53        |
| 39 | Two New Polymers as Candidates for Rhinoplasty Allografts: An Experimental Study in a Rabbit Model.<br>Annals of Otology, Rhinology and Laryngology, 2013, 122, 474-479.                                                                   | 0.6 | 5         |
| 40 | Tunable Wetting of Polymer Surfaces. Langmuir, 2012, 28, 14808-14814.                                                                                                                                                                      | 1.6 | 44        |
| 41 | The effect of varying soft and hard segment length on the structure–property relationships of<br>segmented polyurethanes based on a linear symmetric diisocyanate, 1,4-butanediol and PTMO soft<br>segments. Polymer, 2012, 53, 5358-5366. | 1.8 | 119       |
| 42 | Effect of UV/ozone irradiation on the surface properties of electrospun webs and films prepared from polydimethylsiloxane–urea copolymers. Applied Surface Science, 2012, 258, 4246-4253.                                                  | 3.1 | 23        |
| 43 | Effect of soft segment molecular weight on tensile properties of poly(propylene oxide) based polyurethaneureas. Polymer, 2012, 53, 4614-4622.                                                                                              | 1.8 | 55        |
| 44 | Multiscale Modeling of the Morphology and Properties of Segmented Silicone-Urea Copolymers.<br>Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 604-616.                                                          | 1.9 | 22        |
| 45 | Micro-phase Separation via Spinodal-like Decomposition in Hexamethylynediisocyanate (HDI)-polyurea.<br>Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 624-628.                                                  | 1.9 | 1         |
| 46 | Facile preparation of superhydrophobic polymer surfaces. Polymer, 2012, 53, 1180-1188.                                                                                                                                                     | 1.8 | 99        |
| 47 | Fumed silica filled poly(dimethylsiloxane-urea) segmented copolymers: Preparation and properties.<br>Polymer, 2011, 52, 4189-4198.                                                                                                         | 1.8 | 51        |
| 48 | Influence of soft segment molecular weight on the mechanical hysteresis and set behavior of silicone-urea copolymers with low hard segment contents. Polymer, 2011, 52, 266-274.                                                           | 1.8 | 73        |
| 49 | Erbium(III)â€doped polyurethaneureas: Novel broadband ultravioletâ€ŧoâ€visible converters. Journal of<br>Applied Polymer Science, 2010, 117, 378-383.                                                                                      | 1.3 | 2         |
| 50 | Antibacterial Silicone-Urea/Organoclay Nanocomposites. Silicon, 2009, 1, 183-190.                                                                                                                                                          | 1.8 | 12        |
| 51 | Polyisobutyleneâ€based segmented polyureas. I. Synthesis of hydrolytically and oxidatively stable polyureas. Journal of Polymer Science Part A, 2009, 47, 38-48.                                                                           | 2.5 | 47        |
| 52 | Polyisobutyleneâ€based polyurethanes. II. Polyureas containing mixed PIB/PTMO soft segments. Journal<br>of Polymer Science Part A, 2009, 47, 2787-2797.                                                                                    | 2.5 | 48        |
| 53 | Polyisobutyleneâ€based polyurethanes. III. Polyurethanes containing PIB/PTMO soft coâ€segments. Journal<br>of Polymer Science Part A, 2009, 47, 5278-5290.                                                                                 | 2.5 | 31        |
| 54 | PIBâ€based polyurethanes. IV. The morphology of polyurethanes containing soft coâ€segments*. Journal of<br>Polymer Science Part A, 2009, 47, 6180-6190.                                                                                    | 2.5 | 15        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Timeâ€dependent morphology development in segmented polyetherurea copolymers based on aromatic<br>diisocyanates. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 471-483.                                             | 2.4 | 48        |
| 56 | Contribution of soft segment entanglement on the tensile properties of silicone–urea copolymers with low hard segment contents. Polymer, 2009, 50, 4432-4437.                                                                        | 1.8 | 72        |
| 57 | Real time mechano-optical study on deformation behavior of PTMO/CHDI-based polyetherurethanes under uniaxial extension. Polymer, 2009, 50, 4644-4655.                                                                                | 1.8 | 26        |
| 58 | Influence of polymerization procedure on polymer topology and other structural properties in highly branched polymers obtained by A2+B3 approach. Polymer, 2008, 49, 1414-1424.                                                      | 1.8 | 13        |
| 59 | Probing the urea hard domain connectivity in segmented, non-chain extended polyureas using hydrogen-bond screening agents. Polymer, 2008, 49, 174-179.                                                                               | 1.8 | 52        |
| 60 | Informal Undergraduate Polymer Research Program at Koc University Chemistry Department. Polymer<br>Reviews, 2008, 48, 633-641.                                                                                                       | 5.3 | 0         |
| 61 | Effect of Symmetry and Hâ€bond Strength of Hard Segments on the Structureâ€Property Relationships of<br>Segmented, Nonchain Extended Polyurethanes and Polyureas. Journal of Macromolecular Science -<br>Physics, 2007, 46, 853-875. | 0.4 | 94        |
| 62 | Structureâ€Morphologyâ€Property Behavior of Segmented Thermoplastic Polyurethanes and Polyureas<br>Prepared without Chain Extenders. Polymer Reviews, 2007, 47, 487-510.                                                             | 5.3 | 120       |
| 63 | Structure–property relationships and melt rheology of segmented, non-chain extended polyureas:<br>Effect of soft segment molecular weight. Polymer, 2007, 48, 290-301.                                                               | 1.8 | 118       |
| 64 | Silicone-Urea Copolymers Modified with Polyethers. ACS Symposium Series, 2007, , 100-115.                                                                                                                                            | 0.5 | 4         |
| 65 | FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer, 2006, 47, 4105-4114.                                                                           | 1.8 | 294       |
| 66 | Luminescent Nd3+ doped silicone–urea copolymers. Polymer, 2006, 47, 982-990.                                                                                                                                                         | 1.8 | 9         |
| 67 | Anomalous dilute solution properties of segmented polydimethylsiloxane–polyurea copolymers in isopropyl alcohol. Polymer, 2006, 47, 1179-1186.                                                                                       | 1.8 | 6         |
| 68 | Highly Branched Poly(arylene ether)s via Oligomeric A2 + B3 Strategies. Macromolecular Chemistry and<br>Physics, 2006, 207, 576-586.                                                                                                 | 1.1 | 27        |
| 69 | Luminescence Characteristics of Nd3+-Doped Silicone-Urea Copolymers. , 2006, , .                                                                                                                                                     |     | 0         |
| 70 | Electrospinning of linear and highly branched segmented poly(urethane urea)s. Polymer, 2005, 46, 2011-2015.                                                                                                                          | 1.8 | 82        |
| 71 | Understanding the structure development in hyperbranched polymers prepared by oligomeric A2+B3 approach: comparison of experimental results and simulations. Polymer, 2005, 46, 4533-4543.                                           | 1.8 | 71        |
| 72 | Role of chain symmetry and hydrogen bonding in segmented copolymers with monodisperse hard segments. Polymer, 2005, 46, 7317-7322.                                                                                                   | 1.8 | 148       |

ISKENDER YILGOR

| #  | Article                                                                                                                                                                                                                   | IF               | CITATIONS                       |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------|
| 73 | Structure–property behavior of segmented polyurethaneurea copolymers based on an<br>ethylene–butylene soft segment. Polymer, 2005, 46, 10191-10201.                                                                       | 1.8              | 60                              |
| 74 | Structure–property behavior of poly(dimethylsiloxane) based segmented polyurea copolymers<br>modified with poly(propylene oxide). Polymer, 2005, 46, 8185-8193.                                                           | 1.8              | 67                              |
| 75 | A comparative study of the structure–property behavior of highly branched segmented poly(urethane) Tj ETQq1                                                                                                               | 1.0.7843<br>1.8  | 914 rgBT /0                     |
| 76 | Structure — Property Behavior of New Segmented Polyurethanes and Polyureas Without Use of Chain<br>Extenders. Rubber Chemistry and Technology, 2005, 78, 737-753.                                                         | 0.6              | 34                              |
| 77 | Influence of Annealing on the Performance of Short Glass Fiber-reinforced Polyphenylene Sulfide<br>(PPS) Composites. Journal of Composite Materials, 2005, 39, 21-33.                                                     | 1.2              | 20                              |
| 78 | Time-Dependent Morphology Development in a Segmented Polyurethane with Monodisperse Hard<br>Segments Based on 1,4-Phenylene Diisocyanate. Macromolecules, 2005, 38, 10074-10079.                                          | 2.2              | 43                              |
| 79 | Probing the Hard Segment Phase Connectivity and Percolation in Model Segmented Poly(urethane) Tj ETQq1 1 0.3                                                                                                              | 784314 rg<br>2.2 | $^{\rm gBT}_{53}/{\rm Overlow}$ |
| 80 | Rheology and processing of BaSO4-filled medical-grade thermoplastic polyurethane. Polymer<br>Engineering and Science, 2004, 44, 1941-1948.                                                                                | 1.5              | 17                              |
| 81 | Preparation of segmented, high molecular weight, aliphatic poly(ether-urea) copolymers in isopropanol. In-situ FTIR studies and polymer synthesis. Polymer, 2004, 45, 5829-5836.                                          | 1.8              | 47                              |
| 82 | Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers: a comparative perspective. Polymer, 2004, 45, 6919-6932. | 1.8              | 177                             |
| 83 | Effect of Chemical Composition on Large Deformation Mechanooptical Properties of High Strength<br>Thermoplastic Poly(urethane urea)s. Macromolecules, 2004, 37, 8676-8685.                                                | 2.2              | 28                              |
| 84 | A New Generation of Highly Branched Polymers:  Hyperbranched, Segmented Poly(urethane urea)<br>Elastomers. Macromolecules, 2004, 37, 7081-7084.                                                                           | 2.2              | 84                              |
| 85 | Surface properties of polyamides modified with reactive polydimethylsiloxane oligomers and copolymers. Polymer, 2003, 44, 7271-7279.                                                                                      | 1.8              | 21                              |
| 86 | Isopropyl alcohol: an unusual, powerful, â€~green' solvent for the preparation of silicone–urea copolymers with high urea contents. Polymer, 2003, 44, 7787-7793.                                                         | 1.8              | 67                              |
| 87 | Influence of lithium chloride on the morphology of flexible slabstock polyurethane foams and their plaque counterparts. Polymer, 2003, 44, 757-768.                                                                       | 1.8              | 16                              |
| 88 | Rheology and extrusion of medical-grade thermoplastic polyurethane. Polymer Engineering and Science, 2003, 43, 1863-1877.                                                                                                 | 1.5              | 41                              |
| 89 | Exploring Urea Phase Connectivity in Molded Flexible Polyurethane Foam Formulations Using LiBr as a<br>Probe. Journal of Macromolecular Science - Physics, 2003, 42, 1125-1139.                                           | 0.4              | 9                               |
| 90 | Conformational Analysis of Model Poly(ether urethane) Chains in the Unperturbed State and under<br>External Forces. Macromolecules, 2002, 35, 9825-9831.                                                                  | 2.2              | 5                               |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Modification of polyolefins with silicone copolymers. I. Processing behavior and surface<br>characterization of PP and HDPE blended with silicone copolymers. Journal of Applied Polymer<br>Science, 2002, 83, 1625-1634.                           | 1.3 | 25        |
| 92  | Modification of polyolefins with silicone copolymers. II. Thermal, mechanical, and tribological<br>behavior of PP and HDPE blended with silicone copolymers. Journal of Applied Polymer Science, 2002,<br>84, 535-540.                              | 1.3 | 10        |
| 93  | Electrospinning of polyurethane fibers. Polymer, 2002, 43, 3303-3309.                                                                                                                                                                               | 1.8 | 942       |
| 94  | Hydrogen bonding and polyurethane morphology. II. Spectroscopic, thermal and crystallization<br>behavior of polyether blends with 1,3-dimethylurea and a model urethane compound. Polymer, 2002, 43,<br>6561-6568.                                  | 1.8 | 102       |
| 95  | Hydrogen bonding and polyurethane morphology. I. Quantum mechanical calculations of hydrogen bond energies and vibrational spectroscopy of model compounds. Polymer, 2002, 43, 6551-6559.                                                           | 1.8 | 223       |
| 96  | Hydrogen bonding: a critical parameter in designing silicone copolymers. Polymer, 2001, 42, 7953-7959.                                                                                                                                              | 1.8 | 111       |
| 97  | Comparison of hydrogen bonding in polydimethylsiloxane and polyether based urethane and urea copolymers. Polymer, 2000, 41, 849-857.                                                                                                                | 1.8 | 226       |
| 98  | High Strength Silicone-Urethane Copolymers: Synthesis and Properties. ACS Symposium Series, 2000, , 395-407.                                                                                                                                        | 0.5 | 3         |
| 99  | Hydrophilic polyurethaneurea membranes: influence of soft block composition on the water vapor permeation rates. Polymer, 1999, 40, 5575-5581.                                                                                                      | 1.8 | 78        |
| 100 | Catalyst effect on the transesterification reactions between polycarbonate and polycaprolactone-B-polydimethylsiloxane triblock copolymers. Polymer Bulletin, 1999, 43, 207-214.                                                                    | 1.7 | 12        |
| 101 | Thermal stabilities of end groups in hydroxyalkyl terminated polydimethylsiloxane oligomers. Polymer<br>Bulletin, 1998, 40, 525-532.                                                                                                                | 1.7 | 34        |
| 102 | 1,3-bis(γ-aminopropyl)tetramethyldisiloxane modified epoxy resins: curing and characterization.<br>Polymer, 1998, 39, 1691-1695.                                                                                                                    | 1.8 | 25        |
| 103 | Siloxane Terpolymers as Compatibilizers for Polymer Blends. , 1997, , 195-209.                                                                                                                                                                      |     | 0         |
| 104 | Surface Depletion of End Groups in Amine-Terminated Poly(dimethylsiloxane). Macromolecules, 1994, 27, 2409-2413.                                                                                                                                    | 2.2 | 54        |
| 105 | Molecular weight dependence and end-group effects on the surface tension of poly(dimethylsiloxane). Macromolecules, 1993, 26, 3069-3074.                                                                                                            | 2.2 | 135       |
| 106 | Chemical modification of matrix resin networks with engineering thermoplastics: 1. Synthesis,<br>morphology, physical behaviour and toughening mechanisms of poly(arylene ether sulphone) modified<br>epoxy networks. Polymer, 1991, 32, 2020-2032. | 1.8 | 233       |
| 107 | Isocyanate–epoxy reactions in bulk and solution. Journal of Applied Polymer Science, 1989, 38, 373-382.                                                                                                                                             | 1.3 | 31        |
| 108 | Novel triblock siloxane copolymers: Synthesis, characterization, and their use as surface modifying additives. Journal of Polymer Science Part A, 1989, 27, 3673-3690.                                                                              | 2.5 | 73        |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Polysiloxane containing copolymers: A survey of recent developments. , 1988, , 1-86.                                                                                                                          |     | 319       |
| 110 | Studies on the Synthesis of Novel Block Ionomers. ACS Symposium Series, 1986, , 79-92.                                                                                                                        | 0.5 | 6         |
| 111 | Effect of catalysts on the reaction between a cycloaliphatic diisocyanate (H-MDI) and n-butanol.<br>Journal of Applied Polymer Science, 1985, 30, 1733-1739.                                                  | 1.3 | 27        |
| 112 | Segmented organosiloxane copolymers: 2 Thermal and mechanical properties of siloxane—urea copolymers. Polymer, 1984, 25, 1807-1816.                                                                           | 1.8 | 135       |
| 113 | Synthesis of high molecular weight polyester carbonates via interfacial phosgenation of aromatic dicarboxylic acids and bisphenols. Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22, 679-704. | 0.8 | 19        |
| 114 | Synthesis and characterization of sulfonated poly(acrylene ether sulfones). Journal of Polymer<br>Science: Polymer Chemistry Edition, 1984, 22, 721-737.                                                      | 0.8 | 175       |
| 115 | Novel supercritical fluid techniques for polymer fractionation and purification. Polymer Bulletin, 1984, 12, 491-497.                                                                                         | 1.7 | 25        |
| 116 | Novel supercritical fluid techniques for polymer fractionation and purification. Polymer Bulletin, 1984, 12, 499-506.                                                                                         | 1.7 | 51        |
| 117 | Synthesis and characterization of free radical cured Bis-methacryloxy bisphenol-A epoxy networks.<br>Polymer Composites, 1983, 4, 120-125.                                                                    | 2.3 | 13        |
| 118 | Copolymerization of fluorinated acrylic monomers and sodium-p-styrene sulfonate. Journal of Fluorine Chemistry, 1982, 21, 66.                                                                                 | 0.9 | 0         |
| 119 | A DSC kinetic study of the epoxy network system bisphenol-A diglycidylether-<br>bis(4-aminocyclohexyl)methane. Polymer Bulletin, 1981, 4, 323-327.                                                            | 1.7 | 20        |