
Mario Minale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6107197/publications.pdf Version: 2024-02-01

MARIO MINALE

#	Article	IF	CITATIONS
1	Equation of change for ellipsoidal drops in viscous flow. Journal of Non-Newtonian Fluid Mechanics, 1998, 78, 227-241.	1.0	293
2	Effect of Shear History on the Morphology of Immiscible Polymer Blends. Macromolecules, 1997, 30, 5470-5475.	2.2	141
3	Models for the deformation of a single ellipsoidal drop: a review. Rheologica Acta, 2010, 49, 789-806.	1.1	74
4	Study of the morphological hysteresis in immiscible polymer blends. AICHE Journal, 1998, 44, 943-950.	1.8	69
5	Drop shape dynamics under shear-flow reversal. Journal of Rheology, 2000, 44, 1385-1399.	1.3	53
6	Rheology and rheological morphology determination in immiscible two-phase polymer model blends. Journal of Non-Newtonian Fluid Mechanics, 2000, 93, 153-165.	1.0	44
7	Drop shape dynamics of a Newtonian drop in a non-Newtonian matrix during transient and steady shear flow. Journal of Rheology, 2007, 51, 261-273.	1.3	43
8	Deformation of a non-Newtonian ellipsoidal drop in a non-Newtonian matrix: extension of Maffettone–Minale model. Journal of Non-Newtonian Fluid Mechanics, 2004, 123, 151-160.	1.0	42
9	On the use of rough geometries in rheometry. Journal of Non-Newtonian Fluid Mechanics, 2013, 198, 39-47.	1.0	42
10	Momentum transfer within a porous medium. II. Stress boundary condition. Physics of Fluids, 2014, 26, .	1.6	38
11	Chemical–physical analysis of rheologically different samples of a heavy crude oil. Fuel Processing Technology, 2016, 148, 236-247.	3.7	38
12	A phenomenological model for wall effects on the deformation of an ellipsoidal drop in viscous flow. Rheologica Acta, 2008, 47, 667-675.	1.1	36
13	Microconfined Shear Deformation of a Droplet in an Equiviscous Non-Newtonian Immiscible Fluid: Experiments and Modeling. Langmuir, 2010, 26, 126-132.	1.6	35
14	Predicting the apparent wall slip when using roughened geometries: A porous medium approach. Journal of Rheology, 2015, 59, 1131-1149.	1.3	35
15	Rheology of natural slurries involved in a rapid mudflow with different soil organic carbon content. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 466, 57-65.	2.3	35
16	Momentum transfer within a porous medium. I. Theoretical derivation of the momentum balance on the solid skeleton. Physics of Fluids, 2014, 26, .	1.6	31
17	Transient flow experiments in a model immiscible polymer blend. Journal of Rheology, 1999, 43, 815-827.	1.3	29
18	Shear flow over a porous layer: Velocity in the real proximity of the interface via rheological tests. Physics of Fluids, 2011, 23, .	1.6	27

MARIO MINALE

#	Article	IF	CITATIONS
19	Rheology of semi-dilute emulsions: viscoelastic effects caused by the interfacial tension. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 150, 217-228.	2.3	26
20	Effect of solvents on the microstructure aggregation of a heavy crude oil. Fuel Processing Technology, 2018, 177, 299-308.	3.7	26
21	Effect of the NiO/SiO ₂ Nanoparticles-Assisted Ultrasound Cavitation Process on the Rheological Properties of Heavy Crude Oil: Steady State Rheometry and Oscillatory Tests. Energy & Fuels, 2019, 33, 9671-9680.	2.5	22
22	A new experimental technique to study the flow in a porous layer via rheological tests. AIP Conference Proceedings, 2012, , .	0.3	21
23	Temperature and pH effect on methane production from buffalo manure anaerobic Digestion. International Journal of Heat and Technology, 2016, 34, S425-S429.	0.3	21
24	The peculiar role of C/N and initial pH in anaerobic digestion of lactating and non-lactating water buffalo manure. Waste Management, 2020, 103, 12-21.	3.7	19
25	Phenomenological study of the micro- and macroscopic mechanisms during polymer flooding with SiO2 nanoparticles. Journal of Petroleum Science and Engineering, 2021, 198, 108135.	2.1	17
26	Modelling the flow of a second order fluid through and over a porous medium using the volume averages. II. The stress boundary condition. Physics of Fluids, 2016, 28, .	1.6	14
27	Rough geometries with viscoelastic Boger fluids: Predicting the apparent wall slip with a porous medium approach. Journal of Rheology, 2019, 63, 569-582.	1.3	14
28	DGGE analysis of buffalo manure eubacteria for hydrogen production: effect of pH, temperature and pretreatments. Molecular Biology Reports, 2012, 39, 10193-10200.	1.0	13
29	Combustion of Hydrogen Enriched Methane and Biogases Containing Hydrogen in a Controlled Auto-Ignition Engine. Applied Sciences (Switzerland), 2018, 8, 2667.	1.3	12
30	Use of biogas containing CH4, H2 and CO2 in controlled auto-ignition engines to reduce NOx emissions. Fuel, 2021, 301, 120925.	3.4	12
31	Modelling the flow of a second order fluid through and over a porous medium using the volume averages. I. The generalized Brinkman's equation. Physics of Fluids, 2016, 28, 023102.	1.6	10
32	Numerical predictions of the viscosity of non-Brownian suspensions in the semidilute regime. Journal of Rheology, 2011, 55, 1319-1340.	1.3	8
33	Rheology and mechanics of polyether(ether)ketone – Polyetherimide blends for composites in aeronautics. AIP Conference Proceedings, 2016, , .	0.3	8
34	The microstructural change causing the failure of the Cox-Merz rule in Newtonian suspensions: experiments and simulations. Rheologica Acta, 2021, 60, 309-325.	1,1	8
35	Biogas Production from Anaerobic Digestion of Manure at Different Operative Conditions. International Journal of Heat and Technology, 2016, 34, 623-629.	0.3	8
36	HPMC Hydrogel Formation Mechanisms Unveiled by the Evaluation of the Activation Energy. Polymers, 2022, 14, 635.	2.0	8

MARIO MINALE

#	Article	IF	CITATIONS
37	Morphology estimation from normal stress measurements for dilute immiscible polymer blends. Rheologica Acta, 2003, 42, 158-165.	1.1	7
38	Two-fluid demixing theory predictions of stress-induced turbidity of polystyrene solutions in dioctyl phthalate. Journal of Rheology, 2003, 47, 1-17.	1.3	7
39	Non-Brownian Newtonian suspensions may be rate dependent in time sweep oscillatory shear flow. Journal of Rheology, 2020, 64, 1075-1085.	1.3	6
40	Effect of frequency on the complex viscosity of a concentrated non-Brownian suspension. AIP Conference Proceedings, 2014, , .	0.3	5
41	Nonisothermal Crystallization Kinetics of an Ethyleneâ€Vinylâ€Acetate: I Calorimetry Versus Rheology. Polymer Engineering and Science, 2019, 59, 2557-2563.	1.5	5
42	Nonâ€Isothermal Crystallization Kinetics of an Ethyleneâ€Vinylâ€Acetate. II. Timeâ€Temperatureâ€Crystallinityâ€Superposition. Polymer Engineering and Science, 2019, 59, 2550-2556.	1.5	5
43	lce streams in Antarctica: transverse instability of gravity driven flow. Journal of Non-Newtonian Fluid Mechanics, 1996, 62, 155-174.	1.0	4
44	Stress Induced Demixing of a Polymer Solution: Mechanic Interpretation with a Suitable Formulation of the Two-Fluid Theory. Macromolecules, 2008, 41, 4471-4478.	2.2	4
45	Temperature and pH effect on methane production from buffalo manure anaerobic Digestion. International Journal of Heat and Technology, 2016, 34, S425-S429.	0.3	4
46	Heat-transfer analysis of the basal melting of antarctic ice shelves. AICHE Journal, 1993, 39, 2019-2026.	1.8	3
47	Effect of the Soil Organic Content on Slurries Involved in Mudflows. Procedia Earth and Planetary Science, 2016, 16, 89-97.	0.6	3
48	Irreversibility and rate dependence in sheared adhesive suspensions. Physical Review Fluids, 2021, 6, .	1.0	3
49	On mass diffusion effects in a Stefan-like problem arising in the melting of antarctic ice shelves. Chemical Engineering Science, 1994, 49, 3205-3215.	1.9	2
50	Coupling effects between stress and concentration changes in polymers. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1998, 78, 215-219.	0.6	2
51	Dependence of suspension complex viscosity on frequency: Strain-controlled vs. stress-controlled tests. AIP Conference Proceedings, 2018, , .	0.3	2
52	Dynamics of stiff polymers with the slightly-bending-rod model1Dedicated to the memory of Professor Gianni Astarita.1. Journal of Non-Newtonian Fluid Mechanics, 1998, 76, 351-362.	1.0	1
53	Rheological tests with a Boger fluid and a rough geometry. AIP Conference Proceedings, 2018, , .	0.3	1
54	The effect of monoethylene glycol on the stability of waterâ€inâ€oil emulsions. Canadian Journal of Chemical Engineering, 2022, 100, 44-53.	0.9	1

#	Article	IF	CITATIONS
55	Impact Forces of a Supercritical Flow of a Shear Thinning Slurry Against an Obstacle. , 2017, , 391-398.		1
56	Dependence of flow behaviour of nematics in shear on the form of the mean-field potential. Die Makromolekulare Chemie Theory and Simulations, 1993, 2, 863-873.	1.0	0
57	Effect of Solvent Viscoelasticity on the Stress Induced Demixing. , 2010, , .		Ο