
Vladimir Morozov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6107124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Annealing and Substrate Surface Textures on the Wettability of Grapheneâ€Coated Copper Foil. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100305.	1.8	3
2	Graphene wettability control: Texturing of the substrate and removal of airborne contaminants in the atmosphere of various gases. Journal of Molecular Liquids, 2022, 349, 118116.	4.9	17
3	The effect of textured surface on graphene wettability and droplet evaporation. Journal of Materials Science, 2022, 57, 1850-1862.	3.7	12
4	Experimental data and modeling of wettability on graphene-coated copper. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 277, 115588.	3.5	13
5	Combustion of a Powder Layer of Methane Hydrate: The Influence of Layer Height and Air Velocity Above the Layer. Flow, Turbulence and Combustion, 2022, 109, 175-191.	2.6	10
6	Wetting properties of graphene and multilayer graphene deposited on copper: The influence of copper topography. Thin Solid Films, 2022, 755, 139333.	1.8	3
7	Forming the Convective Flows and a Cluster of Particles under Spot Heating. Nanoscale and Microscale Thermophysical Engineering, 2021, 25, 46-63.	2.6	4
8	Self-organization of TiO2 microparticles on the surface of a thin liquid layer due to local heating and the formation of convective cells. Journal of Molecular Liquids, 2021, 324, 114685.	4.9	6
9	Emergence and breakup of a cluster of ordered microparticles during the interaction of thermocapillary and thermogravitational convection. Powder Technology, 2021, 379, 165-173.	4.2	6
10	The velocity effect of external gas on the droplet evaporation of aqueous salt solution. AIP Conference Proceedings, 2021, , .	0.4	0
11	Evaporating water droplet in a forced air flow. AIP Conference Proceedings, 2021, , .	0.4	Ο
12	Effect of heat treatment on corrosion of laser-textured aluminum alloy surfaces. Journal of Materials Science, 2021, 56, 12845-12863.	3.7	15
13	Influence of Air Velocity on Non-Isothermal Decay and Combustion of Gas Hydrate. Journal of Engineering Thermophysics, 2021, 30, 374-382.	1.4	6
14	Studying the influence of key parameters on the methane hydrate dissociation in order to improve the storage efficiency. Journal of Energy Storage, 2021, 44, 103288.	8.1	22
15	Evaporation of a Droplet of a Heated Colloid Solution on a Horizontal Structured Wall. Journal of Engineering Thermophysics, 2021, 30, 654-660.	1.4	4
16	The effect of impurity particles on the forced convection velocity in a drop. Powder Technology, 2020, 362, 341-349.	4.2	17
17	Droplet evaporation on a structured surface: The role of near wall vortexes in heat and mass transfer. International Journal of Heat and Mass Transfer, 2020, 148, 119126.	4.8	23
18	Experimental study of crystallization of aqueous salt solution of LiBr. AIP Conference Proceedings, 2020	0.4	0

VLADIMIR MOROZOV

#	Article	IF	CITATIONS
19	Experimental study of change of average velocity in a drop on crystalization. Journal of Physics: Conference Series, 2020, 1677, 012090.	0.4	0
20	Experimental study of dissociation of double gas hydrate at various combustion methods. Journal of Physics: Conference Series, 2020, 1677, 012193.	0.4	0
21	Graphene growth on the textured copper surface. Journal of Physics: Conference Series, 2020, 1677, 012157.	0.4	0
22	Convection in Water Droplet in the Presence of External Air Motion. Journal of Engineering Thermophysics, 2020, 29, 443-450.	1.4	3
23	The influence of key parameters on combustion of double gas hydrate. Journal of Natural Gas Science and Engineering, 2020, 80, 103396.	4.4	42
24	Gas Hydrate Combustion in Five Method of Combustion Organization. Entropy, 2020, 22, 710.	2.2	24
25	Experimental study of crystallization in a thin layer of aqueous salt solution of LiBr at different temperatures on the free surface. AIP Conference Proceedings, 2020, , .	0.4	0
26	The Influence of Surfactants, Dynamic and Thermal Factors on Liquid Convection after a Droplet Fall on Another Drop. Applied Sciences (Switzerland), 2020, 10, 4414.	2.5	4
27	Self-Organization of Convective Flows and a Cluster of TiO ₂ Particles in a Water Film under Local Heating: Interaction of Structures at Micro- and Macrolevels. Journal of Physical Chemistry C, 2020, 124, 25054-25061.	3.1	6
28	The influence of the surface microtexture on wettability properties and drop evaporation. Surface and Coatings Technology, 2019, 375, 458-467.	4.8	53
29	Crystallization of Salt Solutions on Surface of Droplet and Layer. Journal of Engineering Thermophysics, 2019, 28, 381-391.	1.4	1
30	The influence of the wall microtexture on functional properties and heat transfer. Journal of Molecular Liquids, 2019, 294, 111670.	4.9	21
31	Desorption in the horizontal layers of water salt solutions. AIP Conference Proceedings, 2019, , .	0.4	0
32	Bubble boiling in a layer of water salt solution. AIP Conference Proceedings, 2019, , .	0.4	0
33	The dynamics of nucleate boiling of salt solutions at a high heat flux. EPJ Web of Conferences, 2019, 196, 00003.	0.3	1
34	Marangoni flow and free convection during crystallization of a salt solution droplet. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572, 37-46.	4.7	56
35	Nonisothermal desorption at nucleate boiling in a layer of aqueous salt solution. EPJ Web of Conferences, 2019, 196, 00004.	0.3	0
36	Experimental study of the dissociation of natural methane hydrate in the channel in the presence of air flow. Journal of Physics: Conference Series, 2019, 1359, 012057.	0.4	0

VLADIMIR MOROZOV

#	Article	IF	CITATIONS
37	Comparison of crystallization behavior in a drop and in a thin layer of an aqueous salt solution of LiBr during non-isothermal desorption. Journal of Physics: Conference Series, 2019, 1359, 012066.	0.4	0
38	The effect of the initial salt concentration on the rate of crystallization in a thin layer of solution. Journal of Physics: Conference Series, 2019, 1382, 012122.	0.4	0
39	Experimental study of the combustion of artificial methane hydrate at different rates of external gas flow. Journal of Physics: Conference Series, 2019, 1382, 012123.	0.4	Ο
40	Nonisothermal Evaporation of Layers of Aqueous Salt Solutions. Journal of Heat Transfer, 2019, 141, .	2.1	2
41	Temperature and velocity fields inside a hanging droplet of a salt solution at its streamlining by a high-temperature air flow. International Journal of Heat and Mass Transfer, 2019, 129, 367-379.	4.8	13
42	Free convection in a drop at liquid evaporation. Journal of Physics: Conference Series, 2018, 1105, 012044.	0.4	2
43	VISUALIZING THE VELOCITY INSIDE A DROP WHEN A COLD DROPLET FALLS ON A SESSILE DROP ON A HOT WALL. Interfacial Phenomena and Heat Transfer, 2018, 6, 209-218.	0.8	3
44	Nonisothermal desorption of droplets of LiBr salt solution on a heated wall. MATEC Web of Conferences, 2018, 194, 01040.	0.2	0
45	Evaporation of layers of salt solutions. MATEC Web of Conferences, 2018, 194, 01041.	0.2	0
46	Influence of the granule size and composition uniformity on methane hydrate dissociation. Journal of Physics: Conference Series, 2018, 1128, 012072.	0.4	0
47	An Experimental Study of Combustion of a Methane Hydrate Layer Using Thermal Imaging and Particle Tracking Velocimetry Methods. Energies, 2018, 11, 3518.	3.1	16
48	The influence of key factors on the heat and mass transfer of a sessile droplet. Experimental Thermal and Fluid Science, 2018, 99, 59-70.	2.7	54
49	High-Efficiency Electron Source with a Hollow Cathode in Technologies of Thin Film Deposition and Surface Treatment under Forevacuum Pressures. Technical Physics, 2018, 63, 888-893.	0.7	12
50	Evaporation modes of LiBr, CaCl2, LiCl, NaCl aqueous salt solution droplets on aluminum surface. International Journal of Heat and Mass Transfer, 2018, 126, 161-168.	4.8	62
51	The role of convection in gas and liquid phases at droplet evaporation. International Journal of Thermal Sciences, 2018, 134, 421-439.	4.9	60
52	Droplet evaporation on a heated structured wall. Thermal Science, 2018, , 147-147.	1.1	3
53	The influence of various factors on the droplet desorption. Journal of Physics: Conference Series, 2017, 899, 032013.	0.4	1
54	The Research of the Boiling Crisis of Hydrous Solution Lithium Bromide. MATEC Web of Conferences, 2016, 72, 01069.	0.2	0

VLADIMIR MOROZOV

#	Article	IF	CITATIONS
55	Non-Isothermal Desorption of Thin Layers of Aqueous Salt Solutions. MATEC Web of Conferences, 2016, 72, 01073.	0.2	0
56	Surface Crystallization of Aqueous Salt Solution Under Overheating and Overcooling. MATEC Web of Conferences, 2016, 72, 01072.	0.2	0
57	Experimental study of evaporation of horizontal films of water–salt solutions. EPJ Web of Conferences, 2015, 82, 01058.	0.3	0
58	Desorption of aqueous salt solution in minichannels. MATEC Web of Conferences, 2015, 23, 01029.	0.2	0
59	Influence of the wall on the droplet evaporation. MATEC Web of Conferences, 2015, 23, 01030.	0.2	0
60	Droplets Evaporation on Heated Wall. MATEC Web of Conferences, 2015, 37, 01032.	0.2	1
61	Nonisothermal Desorption of the Libr Aqueous Salt Solution in Minichannels. MATEC Web of Conferences, 2015, 37, 01033.	0.2	0