Josefina de Gyves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6107051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal Ion Separations by Supported Liquid Membranes. Industrial & Engineering Chemistry Research, 1999, 38, 2182-2202.	3.7	233
2	Arsenic(V) Removal with Polymer Inclusion Membranes from Sulfuric Acid Media Using DBBP as Carrier. Environmental Science & Technology, 2004, 38, 886-891.	10.0	61
3	Structural effects on metal ion migration across polymer inclusion membranes: Dependence of transport profiles on nature of active plasticizer. Journal of Membrane Science, 2008, 307, 105-116.	8.2	55
4	LIX®-loaded polymer inclusion membrane for copper(II) transport. Journal of Membrane Science, 2006, 268, 142-149.	8.2	54
5	Design, synthesis and evaluation of diazadibenzocrown ethers as Pb2+ extractants and carriers in plasticized cellulose triacetate membranes. Talanta, 2001, 54, 1195-1204.	5.5	37
6	Cr(VI) transport via a supported ionic liquid membrane containing CYPHOS IL101 as carrier: System analysis and optimization through experimental design strategies. Journal of Hazardous Materials, 2014, 273, 253-262.	12.4	34
7	Structural effects on metal ion migration across polymer inclusion membranes: Dependence of membrane properties and transport profiles on the weight and volume fractions of the components. Journal of Membrane Science, 2011, 379, 416-425.	8.2	30
8	Gold(III) Transport through Polymer Inclusion Membranes:  Efficiency Factors and Pertraction Mechanism Using Kelex 100 as Carrier. Industrial & Engineering Chemistry Research, 2007, 46, 2861-2869.	3.7	25
9	Mercury(II) removal using polymer inclusion membranes containing Cyanex 471X. Journal of Chemical Technology and Biotechnology, 2009, 84, 1323-1330.	3.2	23
10	Optimization, evaluation, and characterization of a hollow fiber supported liquid membrane for sampling and speciation of lead(II) from aqueous solutions. Journal of Membrane Science, 2010, 363, 180-187.	8.2	23
11	Novel proton-conducting polymer inclusion membranes. Journal of Membrane Science, 2009, 326, 382-387.	8.2	21
12	An SLM System for the Extraction of In(III) from Concentrated HCl Media Using ADOGEN 364 as Carrier. Journal of Chemical Technology and Biotechnology, 1996, 66, 56-64.	3.2	17
13	Cellulose recovery from Quercus sp. sawdust using Ethanosolv pretreatment. Biomass and Bioenergy, 2018, 111, 114-124.	5.7	16
14	Metal nanoparticle–carbon nanotubes hybrid catalysts immobilized in a polymeric membrane for the reduction of 4-nitrophenol. SN Applied Sciences, 2019, 1, 1.	2.9	16
15	Novel semi-interpenetrating polymer network hybrid membranes for proton conduction. Journal of Membrane Science, 2009, 344, 92-100.	8.2	15
16	Arsenic(V) Extraction from Sulfuric Acid Media Using DBBPâ^'D2EHPA Organic Mixtures. Industrial & Engineering Chemistry Research, 2003, 42, 574-581.	3.7	14
17	Hollow-fiber dispersion-free extraction and stripping of Pb(II) in the presence of Cd(II) using D2EHPA under recirculating operation mode. Journal of Chemical Technology and Biotechnology, 2004, 79, 961-973.	3.2	12
18	Simultaneous Au ^{III} Extraction and Inâ€Situ Formation of Polymeric Membrane‣upported Au Nanoparticles: A Sustainable Process with Application in Catalysis. ChemSusChem, 2017, 10, 1482-1493.	6.8	10

Josefina de Gyves

#	Article	IF	CITATIONS
19	Influence of some physicochemical parameters on the passive sampling of copper (II) from aqueous medium using a polymer inclusion membrane device. Environmental Pollution, 2020, 258, 113474.	7.5	8
20	Response Surface Methodology Approach Applied to the Study of Arsenic (V) Migration by Facilitated Transport in Polymer Inclusion Membranes. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	8
21	Selective Palladium(II) Recovery Using a Polymer Inclusion Membrane with Tris(2-ethylhexyl) Phosphate (TEHP). Experimental and Theoretical Study. Industrial & Engineering Chemistry Research, 2021, 60, 3385-3396.	3.7	8
22	Structural Characterization of the Plasticizers' Role in Polymer Inclusion Membranes Used for Indium (III) Transport Containing IONQUEST® 801 as Carrier. Membranes, 2021, 11, 401.	3.0	8
23	Polymer inclusion membranes composed of long alkyl chain alcohols for clean gold (<scp>III</scp>) recovery. Journal of Chemical Technology and Biotechnology, 2014, 89, 825-834.	3.2	7
24	Evaluation of the measurement of Cu(II) bioavailability in complex aqueous media using a hollow-fiber supported liquid membrane device (HFSLM) and two microalgae species (Pseudokirchneriella) Tj ETQq0 0 0 rgBT	/Owarlock	2 10 Tf 50 537
25	Hybrids based on borate-functionalized cellulose nanofibers and noble-metal nanoparticles as sustainable catalysts for environmental applications. RSC Advances, 2020, 10, 12460-12468.	3.6	7
26	Comparative study of As (V) uptake in aqueous medium by a polymer inclusion membrane-based passive sampling device and two filamentous fungi (Aspergillus niger and Rhizopus sp.). Chemosphere, 2021, 272, 129920.	8.2	6
27	Structural characterization of a lariat ether based on 4,10-diaza-2,3,11,12-dibenzo-18-crown-6 and of a coordination Pb(II) complex using picrate as co-ligand. Journal of Chemical Crystallography, 2006, 36, 473-479.	1.1	5
28	Evaluation of a hollow fiber supported liquid membrane device as a chemical surrogate for the measurements of zinc (II) bioavailability using two microalgae strains as biological references. Chemosphere, 2017, 171, 435-445.	8.2	5
29	Nickel (II) Preconcentration and Speciation Analysis During Transport from Aqueous Solutions Using a Hollow-fiber Permeation Liquid Membrane (HFPLM) Device. Membranes, 2011, 1, 217-231.	3.0	4
30	Semi-interpenetrating hybrid membranes containing ADOGEN® 364 for Cd(II) transport from HCl media. Journal of Hazardous Materials, 2014, 280, 603-611.	12.4	4
31	Crosslinking effects on hybrid organic-inorganic proton conducting membranes based on sulfonated polystyrene and polysiloxane. Polymers for Advanced Technologies, 2016, 27, 404-413.	3.2	4
32	Synthesis and characterization of hybrid membranes based on sulfonated poly(ether ether ketone) (SPEEK) and polysiloxane. Desalination and Water Treatment, 0, , 1-7.	1.0	0
33	Organic-inorganic (polysiloxane) crosslinked sulphonated poly(ether ether ketone ketone) hybrid membranes for direct methanol fuel cells. Solid State Ionics, 2021, 363, 115596.	2.7	Ο