Muhammad Jamil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/61070/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rational design of <i>Striga hermonthica</i> -specific seed germination inhibitors. Plant Physiology, 2022, 188, 1369-1384.	4.8	12
2	A New Formulation for Strigolactone Suicidal Germination Agents, towards Successful Striga Management. Plants, 2022, 11, 808.	3.5	18
3	Striga hermonthica Suicidal Germination Activity of Potent Strigolactone Analogs: Evaluation from Laboratory Bioassays to Field Trials. Plants, 2022, 11, 1045.	3.5	21
4	A PLETHORA/PIN-FORMED/auxin network mediates prehaustorium formation in the parasitic plant <i>Striga hermonthica</i> . Plant Physiology, 2022, 189, 2281-2297.	4.8	7
5	Protocol for characterizing strigolactones released by plant roots. STAR Protocols, 2022, 3, 101352.	1.2	20
6	Current progress in <i>Striga</i> management. Plant Physiology, 2021, 185, 1339-1352.	4.8	37
7	SeedQuant: a deep learning-based tool for assessing stimulant and inhibitor activity on root parasitic seeds. Plant Physiology, 2021, 186, 1632-1644.	4.8	21
8	Multi-omics approaches explain the growth-promoting effect of the apocarotenoid growth regulator zaxinone in rice. Communications Biology, 2021, 4, 1222.	4.4	18
9	Efficient Mimics for Elucidating Zaxinone Biology and Promoting Agricultural Applications. Molecular Plant, 2020, 13, 1654-1661.	8.3	24
10	A New Series of Carlactonoic Acid Based Strigolactone Analogs for Fundamental and Applied Research. Frontiers in Plant Science, 2020, 11, 434.	3.6	19
11	The Apocarotenoid Zaxinone Is a Positive Regulator of Strigolactone and Abscisic Acid Biosynthesis in Arabidopsis Roots. Frontiers in Plant Science, 2020, 11, 578.	3.6	48
12	Effect of D-ring C-3' methylation of strigolactone analogs on their transcription regulating activity in rice. Plant Signaling and Behavior, 2019, 14, 1668234.	2.4	1
13	Methylation at the C-3′ in D-Ring of Strigolactone Analogs Reduces Biological Activity in Root Parasitic Plants and Rice. Frontiers in Plant Science, 2019, 10, 353.	3.6	20
14	Suicidal germination as a control strategy for <i>Striga hermonthica</i> (Benth.) in smallholder farms of subâ€6aharan Africa. Plants People Planet, 2019, 1, 107-118.	3.3	70
15	The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Nature Communications, 2019, 10, 810.	12.8	113
16	Methyl phenlactonoates are efficient strigolactone analogs with simple structure. Journal of Experimental Botany, 2018, 69, 2319-2331.	4.8	50
17	Effect of the strigolactone analogs methyl phenlactonoates on spore germination and root colonization of arbuscular mycorrhizal fungi. Heliyon, 2018, 4, e00936.	3.2	20
18	Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis. BMC Plant Biology, 2018, 18, 174.	3.6	106

Muhammad Jamil

#	Article	IF	CITATIONS
19	3-Hydroxycarlactone, a Novel Product of the Strigolactone Biosynthesis Core Pathway. Molecular Plant, 2018, 11, 1312-1314.	8.3	38
20	Structural basis for specific inhibition of the highly sensitive Sh <scp>HTL</scp> 7 receptor. EMBO Reports, 2018, 19, .	4.5	47
21	Nitro-Phenlactone, a Carlactone Analog with Pleiotropic Strigolactone Activities. Molecular Plant, 2016, 9, 1341-1344.	8.3	22
22	Differential Activity of Striga hermonthica Seed Germination Stimulants and Gigaspora rosea Hyphal Branching Factors in Rice and Their Contribution to Underground Communication. PLoS ONE, 2014, 9, e104201.	2.5	14
23	Natural variation of rice strigolactone biosynthesis is associated with the deletion of two <i>MAX1</i> orthologs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2379-2384.	7.1	138
24	<i><scp>S</scp>triga hermonthica <scp>MAX</scp>2</i> restores branching but not the <scp>V</scp> ery <scp>L</scp> ow <scp>F</scp> luence <scp>R</scp> esponse in the <i><scp>A</scp>rabidopsis thaliana max2</i> mutant. New Phytologist, 2014, 202, 531-541.	7.3	40
25	Effect of diammonium phosphate application on strigolactone production and <i>Striga hermonthica</i> infection in three sorghum cultivars. Weed Research, 2013, 53, 121-130.	1.7	30
26	The Path from β-Carotene to Carlactone, a Strigolactone-Like Plant Hormone. Science, 2012, 335, 1348-1351.	12.6	809
27	Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection. Planta, 2012, 235, 473-484.	3.2	69
28	Strigolactones: A Cry for Help Results in Fatal Attraction. Is Escape Possible?. , 2012, , 199-211.		0
29	Quantification of the relationship between strigolactones and <i>Striga hermonthica</i> infection in rice under varying levels of nitrogen and phosphorus. Weed Research, 2011, 51, 373-385.	1.7	112
30	Preâ€attachment <i>Striga hermonthica</i> resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production. New Phytologist, 2011, 192, 964-975.	7.3	109
31	Aromatic A-ring analogues of orobanchol, new germination stimulants for seeds of parasitic weeds. Organic and Biomolecular Chemistry, 2011, 9, 2286.	2.8	20
32	Strigolactone Biosynthesis in <i>Medicago</i> Â <i>truncatula</i> and Rice Requires the Symbiotic GRAS-Type Transcription Factors NSP1 and NSP2 Â. Plant Cell, 2011, 23, 3853-3865.	6.6	291
33	Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice. Archives of Biochemistry and Biophysics, 2010, 504, 123-131.	3.0	53
34	Strigolactones: ecological significance and use as a target for parasitic plant control. Pest Management Science, 2009, 65, 471-477.	3.4	99
35	Alternative control of wild oat and canary grass in wheat fields by allelopathic plant water extracts. Agronomy for Sustainable Development, 2009, 29, 475-482.	5.3	71
36	Evaluation of the Biostimulant Activity of Zaxinone Mimics (MiZax) in Crop Plants. Frontiers in Plant Science, 0, 13, .	3.6	5