Peng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/610675/publications.pdf

Version: 2024-02-01

		331670	330143
58	1,453	21	37
papers	citations	h-index	g-index
58	58	58	1040
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Harmogram: A periodic impulses detection method and its application in bearing fault diagnosis. Mechanical Systems and Signal Processing, 2022, 165, 108374.	8.0	45
2	A Robust Deep Learning Network for Low-Speed Machinery Fault Diagnosis Based on Multikernel and RPCA. IEEE/ASME Transactions on Mechatronics, 2022, 27, 1522-1532.	5.8	21
3	Incrementally accumulated holographic SDP characteristic fusion method in ship propulsion shaft bearing fault diagnosis. Measurement Science and Technology, 2022, 33, 045011.	2.6	6
4	A Method for Extracting Fault Features Using Variable Multilevel Spectral Segmentation Framework and Harmonic Correlation Index. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	4.7	2
5	Bearing Fault Diagnosis Using Reconstruction Adaptive Determinate Stationary Subspace Filtering and Enhanced Third-Order Spectrum. IEEE Sensors Journal, 2022, 22, 10764-10773.	4.7	3
6	Quaternion empirical wavelet transform and its applications in rolling bearing fault diagnosis. Measurement: Journal of the International Measurement Confederation, 2022, 195, 111179.	5.0	11
7	A Novel Convolutional Neural Network for Low-Speed Structural Fault Diagnosis Under Different Operating Condition and Its Understanding via Visualization. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	4.7	17
8	Feature extraction by enhanced analytical mode decomposition based on order statistics filter. Measurement: Journal of the International Measurement Confederation, 2021, 173, 108620.	5.0	15
9	Feature extraction method based on adaptive and concise empirical wavelet transform and its applications in bearing fault diagnosis. Measurement: Journal of the International Measurement Confederation, 2021, 172, 108976.	5.0	58
10	Bearing Fault Feature Enhancement and Diagnosis Based on Statistical Filtering and 1.5-Dimensional Symmetric Difference Analytic Energy Spectrum. IEEE Sensors Journal, 2021, 21, 9959-9968.	4.7	21
11	Automatic Bearing Fault Feature Extraction Method via PFDIC and DBAS. Mathematical Problems in Engineering, 2021, 2021, 1-13.	1.1	3
12	A novel Fast Entrogram and its applications in rolling bearing fault diagnosis. Mechanical Systems and Signal Processing, 2021, 154, 107582.	8.0	82
13	Sparsity-guided multi-scale empirical wavelet transform and its application in fault diagnosis of rolling bearings. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	1.6	6
14	Low-speed bearing fault diagnosis based on improved statistical filtering and convolutional neural network. Measurement Science and Technology, 2021, 32, 115009.	2.6	15
15	Variable spectral segmentation empirical wavelet transform for noisy signal processing. , 2021, 117, 103151.		8
16	Weighted kurtosis-based VMD and improved frequency-weighted energy operator low-speed bearing-fault diagnosis. Measurement Science and Technology, 2021, 32, 035016.	2.6	24
17	Marine Propulsion Shaft Bearing Fault Feature Extraction and Diagnosis Based on Strong Tracking State Principal Component., 2021,,.		O
18	Bearing Fault Diagnosis Based on State-Space Principal Component Tracking Filter Algorithm. IEEE Access, 2021, 9, 158784-158795.	4.2	1

#	Article	IF	CITATIONS
19	Stepwise Intelligent Diagnosis Method for Rotor System with Sliding Bearing Based on Statistical Filter and Stacked Auto-Encoder. Applied Sciences (Switzerland), 2020, 10, 2477.	2.5	5
20	Automatic Patrol and Inspection Method for Machinery Diagnosis Robot—Sound Signal-Based Fuzzy Search Approach. IEEE Sensors Journal, 2020, 20, 8276-8286.	4.7	23
21	Automatic Fault Detection and Isolation Method for Roller Bearing Using Hybrid-GA and Sequential Fuzzy Inference. Sensors, 2019, 19, 3553.	3.8	6
22	A Precise Diagnosis Method of Structural Faults of Rotating Machinery based on Combination of Empirical Mode Decomposition, Sample Entropy, and Deep Belief Network. Sensors, 2019, 19, 591.	3.8	28
23	Automatic signal quality check and equipment condition surveillance based on trivalent logic diagnosis theory. Measurement: Journal of the International Measurement Confederation, 2019, 136, 173-184.	5.0	2
24	Intelligent diagnosis method for machinery by sequential auto-reorganization of histogram. ISA Transactions, 2019, 87, 154-162.	5.7	10
25	Vibration-Based Intelligent Fault Diagnosis for Roller Bearings in Low-Speed Rotating Machinery. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 1887-1899.	4.7	216
26	Inspection and Diagnosis Robot for Plant Equipment â€" Fault Equipment Search Method by Sound and Fuzzy Controlâ€"., 2018,,.		0
27	A Vibration Signal Filtering Method Based on KL Divergence Genetic Algorithm – with Application to Low Speed Bearing Fault Diagnosis. , 2018, , .		5
28	An Effective Singular Value Selection and Bearing Fault Signal Filtering Diagnosis Method Based on False Nearest Neighbors and Statistical Information Criteria. Sensors, 2018, 18, 2235.	3.8	15
29	Step-by-Step Fuzzy Diagnosis Method for Equipment Based on Symptom Extraction and Trivalent Logic Fuzzy Diagnosis Theory. IEEE Transactions on Fuzzy Systems, 2018, 26, 3467-3478.	9.8	95
30	An Automatic Filtering Method Based on an Improved Genetic Algorithm—With Application to Rolling Bearing Fault Signal Extraction. IEEE Sensors Journal, 2017, 17, 6340-6349.	4.7	29
31	Diagnosis of Compound Fault Using Sparsity Promoted-Based Sparse Component Analysis. Sensors, 2017, 17, 1307.	3.8	22
32	New Particle Filter Based on GA for Equipment Remaining Useful Life Prediction. Sensors, 2017, 17, 696.	3.8	22
33	Sequential fault detection for sealed deep groove ball bearings of in-wheel motor in variable operating conditions. Journal of Vibroengineering, 2017, 19, 5947-5959.	1.0	10
34	A Sparsity-Promoted Decomposition for Compressed Fault Diagnosis of Roller Bearings. Sensors, 2016, 16, 1524.	3.8	19
35	Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network. Sensors, 2016, 16, 76.	3.8	15
36	Intelligent Condition Diagnosis Method for Rotating Machinery Based on Probability Density and Discriminant Analyses. IEEE Signal Processing Letters, 2016, 23, 1111-1115.	3.6	12

#	Article	IF	CITATIONS
37	A fuzzy diagnosis of multi-fault state based on information fusion from multiple sensors. Journal of Vibroengineering, 2016, 18, 2135-2148.	1.0	12
38	Intelligent Diagnosis Method for Centrifugal Pump System Using Vibration Signal and Support Vector Machine. Shock and Vibration, 2014, 2014, 1-14.	0.6	20
39	Automatic diagnosis method for structural fault of rotating machinery based on distinctive frequency components and support vector machines under varied operating conditions. Neurocomputing, 2013, 116, 326-335.	5. 9	34
40	Sequential Fuzzy Diagnosis Method for Motor Roller Bearing in Variable Operating Conditions Based on Vibration Analysis. Sensors, 2013, 13, 8013-8041.	3.8	72
41	An Intelligent Diagnosis Method for Rotating Machinery Using Least Squares Mapping and a Fuzzy Neural Network. Sensors, 2012, 12, 5919-5939.	3.8	30
42	Fault Diagnosis Method of Machinery Based on Fisher's Linear Discriminant and Possibility Theory. Lecture Notes in Computer Science, 2012, , 350-357.	1.3	3
43	MWGANN Prediction Model for Electromechanical Equipment Running State. Advanced Materials Research, 2012, 490-495, 437-441.	0.3	0
44	Intelligent Diagnosis Method for Rotating Machinery Using Wavelet Transform and Ant Colony Optimization. IEEE Sensors Journal, 2012, 12, 2474-2484.	4.7	41
45	Fuzzy Diagnosis Method for Rotating Machinery in Variable Rotating Speed. IEEE Sensors Journal, 2011, 11, 23-34.	4.7	52
46	Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network. Computers and Industrial Engineering, 2011, 60, 511-518.	6.3	82
47	Intelligent diagnosis methods for plant machinery. Frontiers of Mechanical Engineering in China, 2010, 5, 118-124.	0.4	4
48	Condition Diagnosis Method Based on Statistic Features and Information Divergence. , 2009, , .		1
49	A Feature Extraction Method Based on Information Theory for Fault Diagnosis of Reciprocating Machinery. Sensors, 2009, 9, 2415-2436.	3.8	39
50	Intelligent diagnosis method for a centrifugal pump using features of vibration signals. Neural Computing and Applications, 2009, 18, 397-405.	5.6	43
51	Fault diagnosis and condition surveillance for plant rotating machinery using partially-linearized neural network. Computers and Industrial Engineering, 2008, 55, 783-794.	6.3	29
52	Sequential diagnosis for rolling bearing using fuzzy neural network., 2008,,.		3
53	Grasping Control of Robot Hand Using Fuzzy Neural Network. Lecture Notes in Computer Science, 2006, , 1178-1187.	1.3	7
54	Fault diagnosis method for machinery in unsteady operating condition by instantaneous power spectrum and genetic programming. Mechanical Systems and Signal Processing, 2005, 19, 175-194.	8.0	43

PENG CHEN

#	Article	IF	CITATION
55	Sequential Fuzzy Diagnosis for Plant Machinery. JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 2003, 46, 1121-1129.	0.3	19
56	Automated function generation of symptom parameters and application to fault diagnosis of machinery under variable operating conditions. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2001, 31, 775-781.	2.9	42
57	Self-Reorganization of Feature Parameters in Frequency Domain by Genetic Programing Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1999, 65, 1946-1953.	0.2	2
58	Life Prediction of Rolling Bearing Using Genetic Algorithm. Applied Mechanics and Materials, 0, 58-60, 2423-2427.	0.2	3