Dominique Van Der Straeten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6106624/publications.pdf

Version: 2024-02-01

265 papers 18,110 citations

7568 77 h-index 123 g-index

288 all docs 288 docs citations

times ranked

288

15726 citing authors

#	Article	IF	CITATIONS
1	Integration of Plant Responses to Environmentally Activated Phytohormonal Signals. Science, 2006, 311, 91-94.	12.6	1,304
2	Ethylene Upregulates Auxin Biosynthesis in <i>Arabidopsis</i> Seedlings to Enhance Inhibition of Root Cell Elongation. Plant Cell, 2007, 19, 2186-2196.	6.6	536
3	The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell, 2018, 174, 448-464.e24.	28.9	420
4	Ethylene Regulates Arabidopsis Development via the Modulation of DELLA Protein Growth Repressor Function. Plant Cell, 2003, 15, 2816-2825.	6.6	391
5	Cryptochrome Blue Light Photoreceptors Are Activated through Interconversion of Flavin Redox States. Journal of Biological Chemistry, 2007, 282, 9383-9391.	3.4	349
6	The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6484-6489.	7.1	334
7	Imaging techniques and the early detection of plant stress. Trends in Plant Science, 2000, 5, 495-501.	8.8	305
8	Role of PIN-mediated auxin efflux in apical hook development of <i>Arabidopsis thaliana </i> Development (Cambridge), 2010, 137, 607-617.	2.5	297
9	Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 2756-2761.	7.1	284
10	Folate fortification of rice by metabolic engineering. Nature Biotechnology, 2007, 25, 1277-1279.	17.5	276
11	The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant Journal, 2005, 43, 745-757.	5.7	273
12	ERF115 Controls Root Quiescent Center Cell Division and Stem Cell Replenishment. Science, 2013, 342, 860-863.	12.6	263
13	Molecular and Physiological Responses to Abscisic Acid and Salts in Roots of Salt-Sensitive and Salt-Tolerant Indica Rice Varieties. Plant Physiology, 1995, 107, 177-186.	4.8	241
14	The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in <i>Arabidopsis thaliana</i> seedlings. Development (Cambridge), 2010, 137, 597-606.	2.5	226
15	Thermal and Chlorophyll-Fluorescence Imaging Distinguish Plant-Pathogen Interactions at an Early Stage. Plant and Cell Physiology, 2004, 45, 887-896.	3.1	225
16	Reaching out of the shade. Current Opinion in Plant Biology, 2005, 8, 462-468.	7.1	222
17	Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. Journal of Experimental Botany, 2007, 58, 773-784.	4.8	215
18	1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene!. Frontiers in Plant Science, 2014, 5, 640.	3.6	213

#	Article	IF	Citations
19	Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-1-carboxylate synthase in tomato Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 4859-4863.	7.1	209
20	In the Early Response of Arabidopsis Roots to Ethylene, Cell Elongation Is Up- and Down-Regulated and Uncoupled from Differentiation. Plant Physiology, 2001, 125, 519-522.	4.8	175
21	HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. Plant Journal, 2007, 49, 428-441.	5.7	172
22	Presymptomatic visualization of plant–virus interactions by thermography. Nature Biotechnology, 1999, 17, 813-816.	17.5	167
23	Seeing is believing: imaging techniques to monitor plant health. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1519, 153-166.	2.4	167
24	Ethylene and Auxin Control the Arabidopsis Response to Decreased Light Intensity. Plant Physiology, 2003, 133, 517-527.	4.8	166
25	Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. Plant Journal, 2003, 33, 989-1000.	5.7	164
26	Ethylene and Hormonal Cross Talk in Vegetative Growth and Development. Plant Physiology, 2015, 169, 61-72.	4.8	162
27	Plant enolase: gene structure, expression, and evolution Plant Cell, 1991, 3, 719-735.	6.6	154
28	Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression. BMC Plant Biology, 2014, 14, 214.	3.6	152
29	Circadian Rhythms of Ethylene Emission in Arabidopsis. Plant Physiology, 2004, 136, 3751-3761.	4.8	147
30	Auxin, Ethylene and Brassinosteroids: Tripartite Control of Growth in the Arabidopsis Hypocotyl. Plant and Cell Physiology, 2005, 46, 827-836.	3.1	146
31	Folates in Plants: Research Advances and Progress in Crop Biofortification. Frontiers in Chemistry, 2017, 5, 21.	3.6	141
32	Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. Nature Biotechnology, 2015, 33, 1076-1078.	17.5	140
33	Of light and length: Regulation of hypocotyl growth inArabidopsis. BioEssays, 2005, 27, 275-284.	2.5	139
34	Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications. Journal of Experimental Botany, 2006, 58, 807-814.	4.8	137
35	Ethylene-mediated enhancement of apical hook formation in etiolatedArabidopsis thalianaseedlings is gibberellin dependent. Plant Journal, 2004, 37, 505-516.	5.7	134
36	Insights into the Evolution of Multicellularity from the Sea Lettuce Genome. Current Biology, 2018, 28, 2921-2933.e5.	3.9	134

#	Article	IF	Citations
37	A Hormone and Proteome Approach to Picturing the Initial Metabolic Events During Plasmodiophora brassicae Infection on Arabidopsis. Molecular Plant-Microbe Interactions, 2006, 19, 1431-1443.	2.6	133
38	The plant hormone ethylene restricts <i>Arabidopsis</i> growth via the epidermis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4130-E4139.	7.1	127
39	A Comparative Molecular-Physiological Study of Submergence Response in Lowland and Deepwater Rice. Plant Physiology, 2001, 125, 955-968.	4.8	124
40	Ethylene in vegetative development: a tale with a riddle. New Phytologist, 2012, 194, 895-909.	7.3	124
41	Ethylene and vegetative development. Physiologia Plantarum, 1997, 100, 593-605.	5.2	123
42	Rosette Tracker: An Open Source Image Analysis Tool for Automatic Quantification of Genotype Effects \hat{A} \hat{A} . Plant Physiology, 2012, 160, 1149-1159.	4.8	123
43	The Arabidopsis 1-Aminocyclopropane-1-Carboxylate Synthase Gene 1 Is Expressed during Early Development Plant Cell, 1993, 5, 897-911.	6.6	122
44	Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene inArabidopsis. Plant Journal, 2004, 39, 537-559.	5.7	122
45	Spatial and temporal analysis of the local response to wounding. Plant Molecular Biology, 2004, 55, 165-181.	3.9	120
46	Engineering Complex Metabolic Pathways in Plants. Annual Review of Plant Biology, 2014, 65, 187-223.	18.7	117
47	Exploiting DELLA Signaling in Cereals. Trends in Plant Science, 2017, 22, 880-893.	8.8	115
48	Folates and Folic Acid: From Fundamental Research Toward Sustainable Health. Critical Reviews in Plant Sciences, 2010, 29, 14-35.	5.7	114
49	Hormone-controlled UV-B responses in plants. Journal of Experimental Botany, 2016, 67, 4469-4482.	4.8	114
50	SLO2, a mitochondrial pentatricopeptide repeat protein affecting several RNA editing sites, is required for energy metabolism. Plant Journal, 2012, 71, 836-849.	5.7	113
51	Folate biofortification in food plants. Trends in Plant Science, 2008, 13, 28-35.	8.8	112
52	Plant Elongator regulates auxin-related genes during RNA polymerase II transcription elongation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1678-1683.	7.1	112
53	Regulation of cell length in the Arabidopsis thaliana root by the ethylene precursor 1â€aminocyclopropane―1 arboxylic acid: a matter of apoplastic reactions. New Phytologist, 2005, 168, 541-550.	7. 3	110
54	Folates in plants: biosynthesis, distribution, and enhancement. Physiologia Plantarum, 2006, 126, 330-342.	5.2	110

#	Article	IF	CITATIONS
55	Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls. Journal of Experimental Botany, 2013, 64, 2481-2497.	4.8	108
56	Multiplying the efficiency and impact of biofortification through metabolic engineering. Nature Communications, 2020, 11 , 5203 .	12.8	106
57	Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications. Frontiers in Plant Science, 2017, 8, 38.	3.6	105
58	pH stability of individual folates during critical sample preparation steps in prevision of the analysis of plant folates. Phytochemical Analysis, 2007, 18, 496-508.	2.4	100
59	Cloning, genetic mapping, and expression analysis of an Arabidopsis thaliana gene that encodes 1-aminocyclopropane-1-carboxylate synthase Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 9969-9973.	7.1	99
60	Willingness-to-accept and purchase genetically modified rice with high folate content in Shanxi Province, China. Appetite, 2010, 54, 118-125.	3.7	99
61	The Arabidopsis thaliana RNA Editing Factor SLO2, which Affects the Mitochondrial Electron Transport Chain, Participates in Multiple Stress and Hormone Responses. Molecular Plant, 2014, 7, 290-310.	8.3	99
62	Present and future of folate biofortification of crop plants. Journal of Experimental Botany, 2014, 65, 895-906.	4.8	98
63	The Arabidopsis Mutant alh1 Illustrates a Cross Talk between Ethylene and Auxin. Plant Physiology, 2003, 131, 1228-1238.	4.8	95
64	Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2â€ketoâ€4â€methylthiobutyric acid production. PLoS Genetics, 2018, 14, e1007273.	3.5	95
65	Identification of NPR1-Dependent and Independent Genes Early Induced by Salicylic Acid Treatment in Arabidopsis. Plant Molecular Biology, 2005, 59, 927-944.	3.9	93
66	Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biology, 2007, 7, 65.	3.6	93
67	Hierarchy of hormone action controlling apical hook development in Arabidopsis. Plant Journal, 2011, 67, 622-634.	5.7	92
68	Potential impact and cost-effectiveness of multi-biofortified rice in China. New Biotechnology, 2012, 29, 432-442.	4.4	92
69	Multiple PPR protein interactions are involved in the RNA editing system in <i>Arabidopsis</i> mitochondria and plastids. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8883-8888.	7.1	91
70	An abscisic-acid- and salt-stress-responsive rice cDNA from a novel plant gene family. Planta, 1997, 202, 443-454.	3.2	90
71	Multiâ€sensor plant imaging: Towards the development of a stressâ€catalogue. Biotechnology Journal, 2009, 4, 1152-1167.	3.5	90
72	Multicolor fluorescence imaging for early detection of the hypersensitive reaction to tobacco mosaic virus. Journal of Plant Physiology, 2007, 164, 253-262.	3.5	88

#	Article	IF	CITATIONS
73	Apoplastic Alkalinization Is Instrumental for the Inhibition of Cell Elongation in the Arabidopsis Root by the Ethylene Precursor 1-Aminocyclopropane-1-Carboxylic Acid Â. Plant Physiology, 2011, 155, 2049-2055.	4.8	88
74	Regulation of Submergence-induced Enhanced Shoot Elongation in Oryza sativa L Annals of Botany, 2003, 91, 263-270.	2.9	86
75	Tuning the pores: towards engineering plants for improved water use efficiency. Trends in Biotechnology, 2005, 23, 308-315.	9.3	86
76	Status and market potential of transgenic biofortified crops. Nature Biotechnology, 2015, 33, 25-29.	17.5	86
77	Thermographic visualization of cell death in tobacco and Arabidopsis. Plant, Cell and Environment, 2001, 24, 15-25.	5.7	84
78	Folate biofortification in food crops. Current Opinion in Biotechnology, 2017, 44, 202-211.	6.6	78
79	Genetic and Physiological Analysis of a New Locus in Arabidopsis That Confers Resistance to 1-Aminocyclopropane-1-Carboxylic Acid and Ethylene and Specifically Affects the Ethylene Signal Transduction Pathway. Plant Physiology, 1993, 102, 401-408.	4.8	74
80	Ethylene: Fine-tuning plant growth and development by stimulation and inhibition of elongation. Plant Science, 2008, 175, 59-70.	3.6	74
81	Cell Elongation and Microtubule Behavior in the Arabidopsis Hypocotyl: Responses to Ethylene and Auxin. Journal of Plant Growth Regulation, 2005, 24, 166-178.	5.1	73
82	Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells. Planta, 2003, 216, 580-586.	3.2	70
83	Regulation of seedling growth by ethylene and the ethylene–auxin crosstalk. Planta, 2017, 245, 467-489.	3.2	70
84	Photoreceptor-Mediated Bending towards UV-B in Arabidopsis. Molecular Plant, 2014, 7, 1041-1052.	8.3	68
85	Ethylene levels are regulated by a plant encoded 1â€aminocyclopropaneâ€1â€carboxylic acid deaminase. Physiologia Plantarum, 2009, 136, 94-109.	5.2	67
86	Ethylene Biosynthesis and Signaling: An Overview. Vitamins and Hormones, 2005, 72, 399-430.	1.7	64
87	Ethylene-induced Arabidopsis hypocotyl elongation is dependent on but not mediated by gibberellins. Journal of Experimental Botany, 2007, 58, 4269-4281.	4.8	64
88	Dihydrofolate Reductase/Thymidylate Synthase Fine-Tunes the Folate Status and Controls Redox Homeostasis in Plants. Plant Cell, 2017, 29, 2831-2853.	6.6	64
89	To grow or not to grow: what can we learn on ethylene-gibberellin cross-talk by in silico gene expression analysis?. Journal of Experimental Botany, 2007, 59, 1-16.	4.8	63
90	Chlorophyll fluorescence imaging for disease-resistance screening of sugar beet. Plant Cell, Tissue and Organ Culture, 2007, 91, 97-106.	2.3	61

#	Article	IF	CITATIONS
91	Ultraviolet Radiation From a Plant Perspective: The Plant-Microorganism Context. Frontiers in Plant Science, 2020, 11, 597642.	3.6	60
92	Ethylene signalling is mediating the early cadmium-induced oxidative challenge in Arabidopsis thaliana. Plant Science, 2015, 239, 137-146.	3.6	59
93	The Ethylene Precursor ACC Affects Early Vegetative Development Independently of Ethylene Signaling. Frontiers in Plant Science, 2019, 10, 1591.	3.6	59
94	Constitutively Active Arabidopsis MAP Kinase 3 Triggers Defense Responses Involving Salicylic Acid and SUMM2 Resistance Protein. Plant Physiology, 2017, 174, 1238-1249.	4.8	57
95	Ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) for the sensitive determination of folates in rice. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 509-513.	2.3	56
96	Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components. American Journal of Botany, 2013, 100, 215-225.	1.7	56
97	Optimisation and validation of a liquid chromatography–tandem mass spectrometry method for folates in rice. Journal of Chromatography A, 2008, 1215, 125-132.	3.7	54
98	Molecular and Pathotype Analysis of the Rice Blast Fungus in North Vietnam. European Journal of Plant Pathology, 2006, 114, 381-396.	1.7	53
99	Regulation of One-Carbon Metabolism in Arabidopsis: The N-Terminal Regulatory Domain of Cystathionine $\langle i \rangle \hat{I}^3 \langle i \rangle$ -Synthase Is Cleaved in Response to Folate Starvation. Plant Physiology, 2007, 145, 491-503.	4.8	53
100	Enhancing pterin and para-aminobenzoate content is not sufficient to successfully biofortify potato tubers and Arabidopsis thaliana plants with folate. Journal of Experimental Botany, 2013, 64, 3899-3909.	4.8	53
101	Wounding stress causes rapid increase in concentration of the naturally occurring 2′,3′-isomers of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in plant tissues. Phytochemistry, 2014, 103, 59-66.	2.9	53
102	A Model of Differential Growth-Guided Apical Hook Formation in Plants. Plant Cell, 2016, 28, 2464-2477.	6.6	53
103	Unravelling the functions of biogenic volatiles in boreal and temperate forest ecosystems. European Journal of Forest Research, 2019, 138, 763-787.	2.5	53
104	Salicylic acid enhances the activity of the alternative pathway of respiration in tobacco leaves and induces thermogenicity. Planta, 1995, 196, 412-419.	3.2	52
105	Investigation of the extraction behavior of the main monoglutamate folates from spinach by liquid chromatography–electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 2005, 1078, 59-66.	3.7	52
106	Robotized Thermal and Chlorophyll Fluorescence Imaging of Pepper Mild Mottle Virus Infection in Nicotiana benthamiana. Plant and Cell Physiology, 2006, 47, 1323-1336.	3.1	52
107	Early detection of nutrient and biotic stress in <i>Phaseolus vulgaris</i> International Journal of Remote Sensing, 2007, 28, 3479-3492.	2.9	52
108	Transcriptome Profiling of the Green Alga <i>Spirogyra pratensis</i> (Charophyta) Suggests an Ancestral Role for Ethylene in Cell Wall Metabolism, Photosynthesis, and Abiotic Stress Responses. Plant Physiology, 2016, 172, 533-545.	4.8	52

#	Article	IF	CITATIONS
109	N-terminal truncated RHT-1 proteins generated by translational reinitiation cause semi-dwarfing of wheat Green Revolution alleles. Molecular Plant, 2021, 14, 679-687.	8.3	52
110	C1 metabolism and chlorophyll synthesis: the Mgâ€protoporphyrin IX methyltransferase activity is dependent on the folate status. New Phytologist, 2009, 182, 137-145.	7.3	51
111	Folate Biofortification of Potato by Tuber-Specific Expression of Four Folate Biosynthesis Genes. Molecular Plant, 2018, 11, 175-188.	8.3	49
112	Health impact in China of folate-biofortified rice. Nature Biotechnology, 2010, 28, 554-556.	17.5	47
113	Characterization of three members of the ACC synthase gene family in Solanum tuberosum L Molecular Genetics and Genomics, 1995, 246, 496-508.	2.4	46
114	Folate enhancement in staple crops by metabolic engineering. Trends in Food Science and Technology, 2005, 16, 271-281.	15.1	42
115	Shaping the shoot: a circuitry that integrates multiple signals. Trends in Plant Science, 2004, 9, 499-506.	8.8	41
116	A Genome-Wide and Metabolic Analysis Determined the Adaptive Response of Arabidopsis Cells to Folate Depletion Induced by Methotrexate. Plant Physiology, 2008, 148, 2083-2095.	4.8	41
117	Ethylene biosynthesis is involved in the early oxidative challenge induced by moderate Cd exposure in Arabidopsis thaliana. Environmental and Experimental Botany, 2015, 117, 1-11.	4.2	41
118	Toward Eradication of B-Vitamin Deficiencies: Considerations for Crop Biofortification. Frontiers in Plant Science, 2018, 9, 443.	3.6	41
119	A Group of Chromosomal Proteins Is Specifically Released by Spermine and Loses DNA-Binding Activity upon Phosphorylation. Plant Physiology, 1994, 106, 559-566.	4.8	40
120	An ultraviolet B condition that affects growth and defense in Arabidopsis. Plant Science, 2018, 268, 54-63.	3.6	40
121	Change in Auxin and Cytokinin Levels Coincides with Altered Expression of Branching Genes during Axillary Bud Outgrowth in Chrysanthemum. PLoS ONE, 2016, 11, e0161732.	2.5	39
122	The Arabidopsis 1-Aminocyclopropane-1-Carboxylate Synthase Gene 1 Is Expressed during Early Development. Plant Cell, 1993, 5, 897.	6.6	38
123	ALTERNATIVE OXIDASE1a modulates the oxidative challenge during moderate Cd exposure in Arabidopsis thaliana leaves. Journal of Experimental Botany, 2015, 66, 2967-2977.	4.8	38
124	Metabolic engineering of micronutrients in crop plants. Annals of the New York Academy of Sciences, 2017, 1390, 59-73.	3.8	38
125	A Method for Fast and Pure DNA Elution from Agarose Gels by Centrifugal Filtration. Nature Biotechnology, 1985, 3, 1014-1016.	17.5	37
126	Tissue Localization of a Submergence-Induced 1-Aminocyclopropane-1-Carboxylic Acid Synthase in Rice. Plant Physiology, 2002, 129, 72-84.	4.8	37

#	Article	IF	Citations
127	Evaluation of automated sample preparation, retention time locked gas chromatography–mass spectrometry and data analysis methods for the metabolomic study of Arabidopsis species. Journal of Chromatography A, 2011, 1218, 3247-3254.	3.7	37
128	Cytosolic Hydroxymethyldihydropterin Pyrophosphokinase/Dihydropteroate Synthase from Arabidopsis thaliana. Journal of Biological Chemistry, 2007, 282, 10749-10761.	3.4	36
129	Research goals for folate and related B vitamin in Europe. European Journal of Clinical Nutrition, 2006, 60, 287-294.	2.9	35
130	Strategies of seedlings to overcome their sessile nature: auxin in mobility control. Frontiers in Plant Science, 2015, 6, 218.	3.6	35
131	Ultraviolet-B radiation stimulates downward leaf curling in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2015, 93, 9-17.	5.8	35
132	Differential UVR8 Signal across the Stem Controls UV-Bâ€"Induced Inflorescence Phototropism. Plant Cell, 2019, 31, 2070-2088.	6.6	35
133	Evolution of folate biosynthesis and metabolism across algae and land plant lineages. Scientific Reports, 2019, 9, 5731.	3.3	35
134	Rapid induction of a novel ACC synthase gene in deepwater rice seedlings upon complete submergence. Euphytica, 2001, 121, 137-143.	1.2	34
135	Assessment of genetic diversity in Tectona grandis using amplified fragment length polymorphism markers. Canadian Journal of Forest Research, 2005, 35, 1017-1022.	1.7	34
136	The Role of Brassinosteroids in Shoot Gravitropism Â. Plant Physiology, 2011, 156, 1331-1336.	4.8	34
137	At the Crossroads of Survival and Death: The Reactive Oxygen Species–Ethylene–Sugar Triad and the Unfolded Protein Response. Trends in Plant Science, 2021, 26, 338-351.	8.8	34
138	The trihelix DNA-binding motif in higher plants is not restricted to the transcription factors GT-1 and GT-2. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3318-3322.	7.1	33
139	Robotized time-lapse imaging to assess in-planta uptake of phenylurea herbicides and their microbial degradation. Physiologia Plantarum, 2003, 118, 613-619.	5.2	33
140	Purification and partial characterization of 1-aminocyclopropane-1-carboxylate synthase from tomato pericarp. FEBS Journal, 1989, 182, 639-647.	0.2	32
141	Methods matter: a metaâ€regression on the determinants of willingnessâ€toâ€pay studies on biofortified foods. Annals of the New York Academy of Sciences, 2017, 1390, 34-46.	3.8	32
142	From in planta Function to Vitamin-Rich Food Crops: The ACE of Biofortification. Frontiers in Plant Science, 2018, 9, 1862.	3.6	32
143	Dynamic infrared imaging analysis of apical hook development in <i>Arabidopsis</i> : the case of brassinosteroids. New Phytologist, 2014, 202, 1398-1411.	7.3	31
144	Tomato alcohol dehydrogenase. FEBS Letters, 1991, 295, 39-42.	2.8	30

#	Article	IF	CITATIONS
145	Position and cell type-dependent microtubule reorientation characterizes the early response of the Arabidopsis root epidermis to ethylene. Physiologia Plantarum, 2004, 121, 513-519.	5.2	30
146	One for All and All for One: Cross-Talk of Multiple Signals Controlling the Plant Phenotype. Journal of Plant Growth Regulation, 2007, 26, 178-187.	5.1	30
147	Expression of three members of the ACC synthase gene family in deepwater rice by submergence, wounding and hormonal treatments. Plant Science, 1997, 124, 79-87.	3.6	29
148	Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes. Plant Molecular Biology, 2013, 83, 329-349.	3.9	29
149	Ethylene Controls Adventitious Root Initiation Sites in Arabidopsis Hypocotyls Independently of Strigolactones. Journal of Plant Growth Regulation, 2017, 36, 897-911.	5.1	29
150	Characterization and expression analysis of the aspartic protease gene family of Cynara cardunculus L FEBS Journal, 2007, 274, 2523-2539.	4.7	28
151	Dissecting the Role of CHITINASE-LIKE1 in Nitrate-Dependent Changes in Root Architecture Â. Plant Physiology, 2011, 157, 1313-1326.	4.8	28
152	Determination of Total Folate in Plant Material by Chemical Conversion intopara-Aminobenzoic Acid Followed by High Performance Liquid Chromatography Combined with On-Line Postcolumn Derivatization and Fluorescence Detection. Journal of Agricultural and Food Chemistry, 2003, 51, 7872-7878.	5.2	27
153	Survival of dried eukaryotes (anhydrobiotes) after exposure to very high temperatures. Biological Journal of the Linnean Society, 0, 93, 15-22.	1.6	27
154	<i>XAP5 CIRCADIAN TIMEKEEPER</i> Regulates Ethylene Responses in Aerial Tissues of Arabidopsis Â. Plant Physiology, 2011, 155, 988-999.	4.8	27
155	Comparison between theoretical and experimental sampling efficiencies on Tenax GC. Journal of Chromatography A, 1985, 331, 207-218.	3.7	26
156	Plant Enolase: Gene Structure, Expression, and Evolution. Plant Cell, 1991, 3, 719.	6.6	26
157	Hormonal cross-talk regulates theArabidopsis thaliana1-aminocyclopropane-1-carboxylate synthase gene1in a developmental and tissue-dependent manner. Physiologia Plantarum, 1999, 105, 312-320.	5.2	26
158	REPRESSOR OF ULTRAVIOLET-B PHOTOMORPHOGENESIS function allows efficient phototropin mediated ultraviolet-B phototropism in etiolated seedlings. Plant Science, 2016, 252, 215-221.	3.6	26
159	Metabolic engineering of rice endosperm towards higher vitamin B1 accumulation. Plant Biotechnology Journal, 2021, 19, 1253-1267.	8.3	26
160	Differential coupling of gibberellin responses by <i>Rht-B1c</i> suppressor alleles and <i>Rht-B1b</i> in wheat highlights a unique role for the DELLA N-terminus in dormancy. Journal of Experimental Botany, 2017, 68, erw471.	4.8	25
161	Regulation of Plant Vitamin Metabolism: Backbone of Biofortification for the Alleviation of Hidden Hunger. Molecular Plant, 2021, 14, 40-60.	8.3	25
162	Response to strigolactone treatment in chrysanthemum axillary buds is influenced by auxin transport inhibition and sucrose availability. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	24

#	Article	IF	Citations
163	Free and totalpara-aminobenzoic acid analysis in plants with high-performance liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2005, 19, 963-969.	1.5	23
164	A comparative analysis of the Arabidopsis mutant amp1-1 and a novel weak amp1 allele reveals new functions of the AMP1 protein. Planta, 2007, 225, 831-842.	3.2	23
165	Reciprocal influence of ethylene and gibberellins on response-gene expression in Arabidopsis thaliana. Planta, 2007, 226, 485-498.	3.2	23
166	A folate independent role for cytosolic HPPK/DHPS upon stress in Arabidopsis thaliana. Phytochemistry, 2012, 73, 23-33.	2.9	23
167	Regulation of nitrogen fixation from free-living organisms in soil and leaf litter of two tropical forests of the Guiana shield. Plant and Soil, 2020, 450, 93-110.	3.7	23
168	Molecular and Physiological Mechanisms of Flooding Avoidance and Tolerance in Rice. Russian Journal of Plant Physiology, 2003, 50, 743-751.	1.1	22
169	Selection and hydroponic growth of potato cultivars for bioregenerative life support systems. Advances in Space Research, 2012, 50, 156-165.	2.6	21
170	A validated ultra-high-performance liquid chromatography–tandem mass spectrometry method for the selective analysis of free and total folate in plasma and red blood cells. Journal of Chromatography A, 2015, 1398, 20-28.	3.7	20
171	The socioeconomics of genetically modified biofortified crops: a systematic review and metaâ€analysis. Annals of the New York Academy of Sciences, 2017, 1390, 14-33.	3.8	20
172	Conceptual framework for ex-ante evaluation at the micro/macro level of GM crops with health benefits. Trends in Food Science and Technology, 2014, 39, 116-134.	15.1	19
173	Novel mechanisms of ethylene-gibberellin crosstalk revealed by the <i>gai eto2-1 </i> double mutant. Plant Signaling and Behavior, 2008, 3, 1113-1115.	2.4	18
174	Inhibition of p-Aminobenzoate and Folate Syntheses in Plants and Apicomplexan Parasites by Natural Product Rubreserine. Journal of Biological Chemistry, 2012, 287, 22367-22376.	3.4	18
175	Light quality regulates plant architecture in different genotypes of Chrysanthemum morifolium Ramat. Scientia Horticulturae, 2017, 218, 177-186.	3.6	18
176	Reduced gibberellin response affects ethylene biosynthesis and responsiveness in the Arabidopsis <i>gai eto2â€1</i> double mutant. New Phytologist, 2008, 177, 128-141.	7.3	17
177	Ex-ante Evaluation of Biotechnology Innovations: the Case of Folate Biofortified Rice in China. Current Pharmaceutical Biotechnology, 2012, 13, 2751-2760.	1.6	17
178	Branching gene expression during chrysanthemum axillary bud outgrowth regulated by strigolactone and auxin transport. Plant Growth Regulation, 2018, 86, 23-36.	3.4	16
179	Differential Accumulation of ELONGATED HYPOCOTYL5 Correlates with Hypocotyl Bending to Ultraviolet-B Light. Plant Physiology, 2014, 166, 40-43.	4.8	15
180	Folates from metabolically engineered rice: A long-term study in rats. Molecular Nutrition and Food Research, 2015, 59, 490-500.	3.3	15

#	Article	IF	CITATIONS
181	The Potential Market for GM Rice with Health Benefits in a Chinese High-Risk Region. Journal of Food Products Marketing, 2015, 21, 231-243.	3.3	15
182	Tools of the Ethylene Trade: A Chemical Kit to Influence Ethylene Responses in Plants and Its Use in Agriculture. Small Methods, 2020, 4, 1900267.	8.6	15
183	Leaf Segmentation and Tracking Using Probabilistic Parametric Active Contours. Lecture Notes in Computer Science, 2011, , 75-85.	1.3	15
184	Real-Time Analysis of the Apical Hook Development. Methods in Molecular Biology, 2017, 1497, 1-8.	0.9	14
185	Evidence for the nitrate-dependent spatial regulation of the nitrate reductase gene in chicory roots. Planta, 1996, 200, 20-27.	3.2	13
186	Monitoring of isothiocyanates emanating from Arabidopsis thaliana upon paraquat spraying. Journal of Chromatography A, 2001, 912, 127-134.	3.7	13
187	The Arabidopsis mutant eer2 has enhanced ethylene responses in the light. Journal of Experimental Botany, 2005, 56, 2409-2420.	4.8	13
188	Folate Profiling in Potato (<i>Solanum tuberosum</i>) Tubers by Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2014, 62, 3092-3100.	5.2	13
189	Editorial overview: Biofortification of crops: achievements, future challenges, socio-economic, health and ethical aspects. Current Opinion in Biotechnology, 2017, 44, vii-x.	6.6	13
190	How negative product attributes alter consumer perceptions of folate biofortified rice in a high risk region of China. International Journal of Biotechnology, 2013, 12, 269.	1.2	12
191	Genetically Modified Rice with Health Benefits as a Means to Reduce Micronutrient Malnutrition. , 2014, , 283-299.		12
192	The 5-formyl-tetrahydrofolate proteome links folates with C/N metabolism and reveals feedback regulation of folate biosynthesis. Plant Cell, 2021, 33, 3367-3385.	6.6	12
193	Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells. Plant Cell Reports, 2018, 37, 809-818.	5.6	11
194	UVR8-dependent reporters reveal spatial characteristics of signal spreading in plant tissues. Photochemical and Photobiological Sciences, 2019, 18, 1030-1045.	2.9	11
195	The First Comprehensive LC–MS/MS Method Allowing Dissection of the Thiamine Pathway in Plants. Analytical Chemistry, 2020, 92, 4073-4081.	6.5	11
196	Effects of Copper and Zinc on the Ethylene Production of Arabidopsis Thaliana., 1999,, 333-338.		11
197	The expression pattern of the Arabidopsis ACC synthase gene 1 during rosette leaf development. Journal of Experimental Botany, 1999, 50, 1561-1566.	4.8	10
198	Elongator regulates hypocotyl growth in darkness and during photomorphogenesis. Journal of Cell Science, 2017, 131, .	2.0	10

#	Article	IF	Citations
199	Comparable canopy and soil free-living nitrogen fixation rates in a lowland tropical forest. Science of the Total Environment, 2021, 754, 142202.	8.0	10
200	The Diverse Salt-Stress Response of Arabidopsis ctr1-1 and ein2-1 Ethylene Signaling Mutants Is Linked to Altered Root Auxin Homeostasis. Plants, 2021, 10, 452.	3.5	10
201	Metabolic engineering provides insight into the regulation of thiamin biosynthesis in plants. Plant Physiology, 2021, 186, 1832-1847.	4.8	10
202	A Comparative Study of Ethylene Emanation upon Nitrogen Deficiency in Natural Accessions of Arabidopsis thaliana. Frontiers in Plant Science, 2016, 7, 70.	3.6	9
203	Clinical determination of folates: recent analytical strategies and challenges. Analytical and Bioanalytical Chemistry, 2019, 411, 4383-4399.	3.7	9
204	High-speed mapping of Hg and Se in biological tissue <i>via</i> laser ablation-inductively coupled plasma-mass spectrometry. Journal of Analytical Atomic Spectrometry, 2022, 37, 1455-1461.	3.0	9
205	Integrative biology: dissecting cross-talk between plant signalling pathways. Physiologia Plantarum, 2005, 123, 109-109.	5.2	8
206	TR-DB: An open-access database of compounds affecting the ethylene-induced triple response in Arabidopsis. Plant Physiology and Biochemistry, 2014, 75, 128-137.	5.8	8
207	Following the star: Inflorescence heliotropism. Environmental and Experimental Botany, 2018, 147, 75-85.	4.2	8
208	The Molecular Basis of Ethylene Biosynthesis, Mode of Action, and Effects in Higher Plants. Sub-Cellular Biochemistry, 1991, 17, 279-326.	2.4	8
209	Ethylene and vegetative development. Physiologia Plantarum, 1997, 100, 593-605.	5.2	7
210	<title>Visualization of early stress responses in plant leaves</title> ., 2002, 4710, 417.		7
211	Physiological and morphological evidence of brassinosteroid-biosynthesis inhibition by the fungicide imazalil. Physiologia Plantarum, 2003, 119, 69-77.	5.2	7
212	Degradation and interconversion of plant pteridines during sample preparation and ultra-high performance liquid chromatography–tandem mass spectrometry. Food Chemistry, 2016, 194, 1189-1198.	8.2	7
213	ACCERBATIN, a small molecule at the intersection of auxin and reactive oxygen species homeostasis with herbicidal properties. Journal of Experimental Botany, 2017, 68, 4185-4203.	4.8	7
214	Effects of tetracycline on wild-type and inducible P35So IPT-5/TETR transgenic tobacco plants. Physiologia Plantarum, 2007, 130, 290-300.	5.2	6
215	Functional analysis of SLO2 provides new insight into the role of plant PPR proteins. Plant Signaling and Behavior, 2012, 7, 1209-1211.	2.4	6
216	Ethylene signaling in salt-stressed Arabidopsis thaliana ein2-1 and ctr1-1 mutants – A dissection of molecular mechanisms involved in acclimation. Plant Physiology and Biochemistry, 2021, 167, 999-1010.	5.8	6

#	Article	IF	Citations
217	A model development approach to ensure identifiability of a simple mass balance model for photosynthesis and respiration in a plant growth chamber. Ecological Modelling, 2012, 246, 105-118.	2.5	5
218	The involvement of the phytohormone ethylene in the adaptation of Arabidopsis rosettes to enhanced atmospheric carbon dioxide concentrations. Environmental and Experimental Botany, 2020, 177, 104128.	4.2	5
219	An optimized LC-MS/MS method as a pivotal tool to steer thiamine biofortification strategies in rice. Talanta, 2021, 224, 121905.	5.5	5
220	Microtubules And The Control Of Cell Elongation In Arabidopsis Roots. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 73-90.	0.2	5
221	A novel panel of yeast assays for the assessment of thiamin and its biosynthetic intermediates in plant tissues. New Phytologist, 2022, 234, 748-763.	7. 3	5
222	A Crop Selection Algorithm for Closed Loop Food Systems. , 0, , .		4
223	A new era in plant metabolism research reveals a bright future for bio-fortification and human nutrition. Physiologia Plantarum, 2006, 126, 289-290.	5.2	4
224	Tracking multiple objects using moving snakes. , 2009, , .		4
225	Identification of simple mass balance models for plant growth - Towards food production on manned space missions. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 335-340.	0.4	4
226	A non-rigid registration method for multispectral imaging of plants. Proceedings of SPIE, 2012, , .	0.8	4
227	Isolation and characterisation of an antifolate insensitive (<i>afi1</i>) mutant of <i>Arabidopsis thaliana</i> . Plant Biology, 2013, 15, 37-44.	3.8	4
228	Cell type specificity of plant hormonal signals: Case studies and reflections on ethylene. Russian Journal of Plant Physiology, 2016, 63, 577-586.	1.1	4
229	Plant Ethylene Detection Using Laser-Based Photo-Acoustic Spectroscopy. Methods in Molecular Biology, 2017, 1573, 11-26.	0.9	4
230	Impact of Nutrient Additions on Freeâ€Living Nitrogen Fixation in Litter and Soil of Two Frenchâ€Guianese Lowland Tropical Forests. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006023.	3.0	4
231	Cryptochromes are the dominant photoreceptors mediating heliotropic responses of Arabidopsis inflorescences. Plant, Cell and Environment, 2021, 44, 3246-3256.	5.7	4
232	Ethylene Signaling: More Players in the Game. , 1999, , 71-75.		4
233	Signal Crosstalk in the Control of Hypocotyl Elongation in Arabidopsis. Plant Cell Monographs, 2006, , 271-293.	0.4	3
234	Imaging Mass Cytometry: A promising multiplex detection tool for plant science research. Molecular Plant, 2021, 14, 1241-1243.	8.3	3

#	Article	IF	Citations
235	Foliar and Root Comparative Metabolomics and Phenolic Profiling of Micro-Tom Tomato (Solanum) Tj ETQq1 I Treatments. Plants, 2022, 11, 1829.	1 0.784314 3.5	4 rgBT /Overlock 3
236	Lupinus albus \hat{I}^3 -tubulin: mRNA and protein accumulation during development and in response to darkness. Planta, 2004, 219, 201-211.	3.2	2
237	Design Approach of Closed Loop Food Systems in Space. , 2005, , .		2
238	Design of an On Ground Experimental Growth Unit (OGEGU) for Space Applications. , 2005, , .		2
239	Ethylene. , 2017, , 403-410.		2
240	Should GM Rice with Nutrition Benefits Be Deployed? Findings from Biotech and Socio-Economic Research., 0,, 139-150.		2
241	Determination of Phototropism by UV-B Radiation. Methods in Molecular Biology, 2019, 1924, 131-139.	0.9	2
242	Phylogeny and Sequence Space: A Combined Approach to Analyze the Evolutionary Trajectories of Homologous Proteins. The Case Study of Aminodeoxychorismate Synthase. Acta Biotheoretica, 2020, 68, 139-156.	1.5	2
243	Editorial: Ethylene Biology and Beyond: Novel Insights in the Ethylene Pathway and Its Interactions. Frontiers in Plant Science, 2020, 11, 248.	3.6	2
244	regulating plant water status by stomatal control. , 2007, , 73-90.		2
245	Blue light dependence of Arabidopsis seedling ethylene responses. , 2007, , 95-100.		2
246	Auxin, ethylene and brassinosteroids: cross talk in the Arabidopsis thaliana hypocotyl., 2007,, 115-117.		2
247	Mix-and-match: an improved, fast and accessible protocol for hypocotyl micrografting of Arabidopsis seedlings with systemic ACC responses as a case study. Plant Methods, 2022, 18, 24.	4.3	2
248	A polymerase chain reaction-based screening method for transgenic Arabidopsis. Genetic Analysis, Techniques and Applications, 1999, 15, 1-4.	1.5	1
249	Ethylene: Inhibitor and Stimulator of Plant Growth. Plant Cell Monographs, 2008, , 199-221.	0.4	1
250	Developmental Stages in Dynamic Plant Growth Models. , 2011, , .		1
251	A Simple Mass Balance Model for Lettuce - The Water Balance. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 1442-1447.	0.4	1
252	Multiple leaf tracking using computer vision methods with shape constraints. , 2013, , .		1

#	Article	IF	Citations
253	Evaluating GM biofortified rice in areas with a high prevalence of folate deficiency. International Journal of Biotechnology, 2014, 13, 257.	1.2	1
254	HORMONAL AND GENETIC REGULATION OF AXILLARY BUD OUTGROWTH IN CHRYSANTHEMUM MORIFOLIUM DURING FLORAL INITIATION. Acta Horticulturae, 2015, , 179-185.	0.2	1
255	Determination of Five Folate Monoglutamates in Rodent Diets. Journal of Agricultural and Food Chemistry, 2015, 63, 10089-10095.	5.2	1
256	Consumer Acceptance and Willingness-to-Pay for Genetically Modified Foods with Enhanced Vitamin Levels., 2016,, 195-206.		1
257	Biofortified Rice to Fight Folate Deficiency. , 2013, , 321-334.		1
258	1-Aminocyclopropane-1-carboxylate synthase genes: Present and future. Current Plant Science and Biotechnology in Agriculture, 1992, , 731-737.	0.0	1
259	Cloning and Expression Analysis of an Arabidopsis Thaliana 1-Aminocyclopropane-1-Carboxylate Synthase Gene: Pattern of Temporal and Spatial Expression. Current Plant Science and Biotechnology in Agriculture, 1993, , 24-30.	0.0	1
260	Tomatoes supply the â€~sunshine vitamin'. Nature Plants, 0, , .	9.3	1
261	A PPR protein, required for normal plant development, may be involved in control of the ethylene pathway at the posttranscriptional level., 2007, 119-120.		0
262	Interactions with the ethylene pathway: a puzzle yet to be completed., 2007,, 61-68.		0
263	Market Potential of Folate Biofortified Rice in China. , 2013, , 357-370.		0
264	Optimization of non-denaturing protein extraction conditions for plant PPR proteins. PLoS ONE, 2017, 12, e0187753.	2.5	0
265	Robust Plant Segmentation from Challenging Background with a Multiband Acquisition and a Supervised Machine Learning Algorithm. , 2018, , .		0