
Pedro de Atauri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6106446/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A data integration methodology for systems biology. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17296-17301.	3.3	293
2	Metabolic control analysis in drug discovery and disease. Nature Biotechnology, 2002, 20, 243-249.	9.4	270
3	From correlation to causation: analysis of metabolomics data using systems biology approaches. Metabolomics, 2018, 14, 37.	1.4	151
4	A data integration methodology for systems biology: Experimental verification. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17302-17307.	3.3	124
5	Oncogenic regulation of tumor metabolic reprogramming. Oncotarget, 2016, 7, 62726-62753.	0.8	116
6	Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast. Nature Genetics, 2006, 38, 1082-1087.	9.4	86
7	Metabolic Reprogramming and Dependencies Associated with Epithelial Cancer Stem Cells Independent of the Epithelial-Mesenchymal Transition Program. Stem Cells, 2016, 34, 1163-1176.	1.4	77
8	Multicriteria optimization of biochemical systems by linear programming: Application to production of ethanol bySaccharomyces cerevisiae. Biotechnology and Bioengineering, 2003, 83, 335-343.	1.7	70
9	Relevance of the MEK/ERK Signaling Pathway in the Metabolism of Activated Macrophages: A Metabolomic Approach. Journal of Immunology, 2012, 188, 1402-1410.	0.4	66
10	PhenoMeNal: processing and analysis of metabolomics data in the cloud. GigaScience, 2019, 8, .	3.3	60
11	Metabolomics: The Stethoscope for the Twenty-First Century. Medical Principles and Practice, 2021, 30, 301-310.	1.1	46
12	<i>De novo</i> <scp>MYC</scp> addiction as an adaptive response of cancer cells to <scp>CDK</scp> 4/6 inhibition. Molecular Systems Biology, 2017, 13, 940.	3.2	43
13	ChainRank, a chain prioritisation method for contextualisation of biological networks. BMC Bioinformatics, 2016, 17, 17.	1.2	38
14	Mathematical modelling of the urea cycle. FEBS Journal, 2003, 270, 3953-3961.	0.2	37
15	Metabolic control analysis aimed at the ribose synthesis pathways of tumor cells: a new strategy for antitumor drug development. Molecular Biology Reports, 2002, 29, 7-12.	1.0	33
16	Evolution of design principles in biochemical networks. IET Systems Biology, 2004, 1, 28-40.	2.0	30
17	Transcriptional noise and cellular heterogeneity in mammalian macrophages. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 495-506.	1.8	29
18	Effects of Cadmium and Mercury on the Upper Part of Skeletal Muscle Glycolysis in Mice. PLoS ONE, 2014, 9, e80018.	1.1	28

Pedro de Atauri

#	Article	IF	CITATIONS
19	Metabolic network adaptations in cancer as targets for novel therapies. Biochemical Society Transactions, 2010, 38, 1302-1306.	1.6	27
20	Network modules uncover mechanisms of skeletal muscle dysfunction in COPD patients. Journal of Translational Medicine, 2018, 16, 34.	1.8	22
21	Interoperable and scalable data analysis with microservices: applications in metabolomics. Bioinformatics, 2019, 35, 3752-3760.	1.8	22
22	Strategies for structuring interdisciplinary education in Systems Biology: an European perspective. Npj Systems Biology and Applications, 2016, 2, 16011.	1.4	21
23	In silico strategy to rationally engineer metabolite production: A case study for threonine in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2009, 103, 609-620.	1.7	18
24	Carbon metabolism and the sign of control coefficients in metabolic adaptations underlying K-ras transformation. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 746-754.	0.5	18
25	A method for estimating stochastic noise in large genetic regulatory networks. Bioinformatics, 2005, 21, 208-217.	1.8	15
26	HepatoDyn: A Dynamic Model of Hepatocyte Metabolism That Integrates 13C Isotopomer Data. PLoS Computational Biology, 2016, 12, e1004899.	1.5	14
27	Cysteine and Folate Metabolism Are Targetable Vulnerabilities of Metastatic Colorectal Cancer. Cancers, 2021, 13, 425.	1.7	14
28	Untargeted metabolomics reveals distinct metabolic reprogramming in endothelial cells co-cultured with CSC and non-CSC prostate cancer cell subpopulations. PLoS ONE, 2018, 13, e0192175.	1.1	13
29	Dynamic simulation of pollutant effects on the threonine pathway in Escherichia coli. Comptes Rendus - Biologies, 2003, 326, 501-508.	0.1	12
30	Characterization of the first described mutation of human red blood cell phosphoglycerate mutase. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1740, 403-410.	1.8	12
31	Tracing metabolic fluxes using mass spectrometry: Stable isotope-resolved metabolomics in health and disease. TrAC - Trends in Analytical Chemistry, 2019, 120, 115371.	5.8	12
32	Occurrence of paradoxical or sustained control by an enzyme when overexpressed: necessary conditions and experimental evidence with regard to hepatic glucokinase. Biochemical Journal, 2001, 355, 787-793.	1.7	11
33	Enzymatic and metabolic characterization of the phosphoglycerate kinase deficiency associated with chronic hemolytic anemia caused by the PGK-Barcelona mutation. Blood Cells, Molecules, and Diseases, 2011, 46, 206-211.	0.6	11
34	Workforce preparation: the Biohealth computing model for Master and PhD students. Journal of Translational Medicine, 2014, 12, S11.	1.8	11
35	Sampling with poling-based flux balance analysis: optimal versus sub-optimal flux space analysis of Actinobacillus succinogenes. BMC Bioinformatics, 2015, 16, 49.	1.2	11
36	Advantages and disadvantages of aggregating fluxes into synthetic and degradative fluxes when modelling metabolic pathways. FEBS Journal, 1999, 265, 671-679.	0.2	10

Pedro de Atauri

#	Article	IF	CITATIONS
37	Glycerol metabolic conversion to succinic acid using Actinobacillus succinogenes. Computer Aided Chemical Engineering, 2011, 29, 1421-1425.	0.3	10
38	In-silico gene essentiality analysis of polyamine biosynthesis reveals APRT as a potential target in cancer. Scientific Reports, 2017, 7, 14358.	1.6	10
39	Analysis and prediction of the effect of uncertain boundary values in modeling a metabolic pathway. , 2000, 68, 18-30.		9
40	Is the regulation of galactose 1-phosphate tuned against gene expression noise?. Biochemical Journal, 2005, 387, 77-84.	1.7	9
41	Feedback control of stochastic noise in the yeast galactose utilization pathway. Physica D: Nonlinear Phenomena, 2006, 217, 64-76.	1.3	9
42	p13CMFA: Parsimonious 13C metabolic flux analysis. PLoS Computational Biology, 2019, 15, e1007310.	1.5	9
43	Metabolomics in systems medicine: an overview of methods and applications. Current Opinion in Systems Biology, 2019, 15, 91-99.	1.3	9
44	Metabolic homeostasis in the human erythrocyte: In silico analysis. BioSystems, 2006, 83, 118-124.	0.9	6
45	The changes in the energy metabolism of human muscle induced by training. Journal of Theoretical Biology, 2008, 252, 402-410.	0.8	6
46	Fluxomics. , 2014, , 237-250.		3
47	Thermodynamically constrained Flux and Control Analysis of Escherichia coli. Computer Aided Chemical Engineering, 2012, 30, 1377-1381.	0.3	3
48	Software Supporting a Workflow of Quantitative Dynamic Flux Maps Estimation in Central Metabolism from SIRM Experimental Data. Methods in Molecular Biology, 2020, 2088, 271-298.	0.4	3
49	Effects of feedback inhibition on transit time in a linear pathway of Michaelis–Menten-type reactions. BioSystems, 1998, 45, 221-235.	0.9	2
50	Integrating systemic and molecular levels to inferÂkey drivers sustaining metabolic adaptations. PLoS Computational Biology, 2021, 17, e1009234.	1.5	2
51	Dependence of Control Coefficient Distribution on the Boundaries of a Metabolic System: A Generalized Analysis of the Effects of Additional Input and Output reactions to a Linear Pathway. Journal of Theoretical Biology, 2002, 215, 239-251.	0.8	1
52	Characterization of the transit and transition times for a pathway unit of Michaelis–Menten mechanism. Biochimica Et Biophysica Acta - General Subjects, 2003, 1623, 6-12.	1.1	1
53	An Escape-Room about Krebs cycle prepared for Chemical Students. International Journal on Engineering, Science and Technology, 2022, 3, 155-164.	0.2	1