
Shun Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6106146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism and threshold fluence of nanosecond pulsed laser paint removal. Rare Metals, 2022, 41, 1022-1031.	7.1	7
2	Mechanisms of near-linear elastic deformation behavior in a binary metastable β-type Ti-Nb alloy with large recoverable strain. Materials Characterization, 2022, 187, 111858.	4.4	6
3	Single crystal shear moduli of β-phase stabilized by thermomechanical treatment in TiNbSn alloys with ultralow elastic modulus. Materials Letters, 2021, 285, 129103.	2.6	4
4	In situ synchrotron X-ray diffraction analysis of deformation behavior of a Nb/NiTi composite for biomedical applications. Rare Metals, 2021, 40, 600-606.	7.1	9
5	A sandwich-structured Nb/NiTi composite with good bio-compatibility, near-linear-elastic deformation and large elastic admissible strain. Composites Part B: Engineering, 2021, 207, 108586.	12.0	14
6	Uniaxial tensile deformation behavior of a sandwich-like structural TiNb-NiTi composite for biomedical applications. Rare Metals, 2021, 40, 3627-3634.	7.1	5
7	Achieving a combination of decent biocompatibility and large near-linear-elastic deformation behavior in shell-core-like structural TiNb/NiTi composite. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104789.	3.1	3
8	In Situ Synchrotron X-ray Diffraction Investigations of the Nonlinear Deformation Behavior of a Low Modulus β-Type Ti36Nb5Zr Alloy. Metals, 2020, 10, 1619.	2.3	4
9	Design and fabrication of a Nb/NiTi superelastic composite with high critical stress for inducing martensitic transformation and large recoverable strain for biomedical applications. Materials Science and Engineering C, 2020, 112, 110894.	7.3	3
10	Deformation behavior of a novel sandwich-like TiNb/NiTi composite with good biocompatibility and superelasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 794, 139784.	5.6	6
11	Microstructure and microhardness of a novel TiZrAIV alloy by laser gas nitriding at different laser powers. Rare Metals, 2020, 39, 270-278.	7.1	17
12	Design and fabrication of a ($\hat{l}^2+\hat{l}\pm$ ") dual-phase Ti-Nb-Sn alloy with linear deformation behavior for biomedical applications. Journal of Alloys and Compounds, 2019, 805, 517-521.	5.5	16
13	Dynamic recrystallization behavior of Fe–20Cr–30Ni–0.6Nb–2Al–Mo alloy. Rare Metals, 2019, 38, 181-188.	7.1	13
14	Design of low modulus Î ² -type titanium alloys by tuning shear modulus C44. Journal of Alloys and Compounds, 2018, 745, 579-585.	5.5	29
15	A metastable β-type Zr-4Mo-4Sn alloy with low cost, low Young's modulus and low magnetic susceptibility for biomedical applications. Journal of Alloys and Compounds, 2018, 754, 232-237.	5.5	20
16	Design and fabrication of a low modulus β-type Ti–Nb–Zr alloy by controlling martensitic transformation. Rare Metals, 2018, 37, 789-794.	7.1	19
17	In situ synchrotron X-ray diffraction study of deformation behaviour of a metastable β-type Ti-33Nb-4Sn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 692, 81-89.	5.6	29
18	One-step removal of insoluble oily compounds and water-miscible contaminants from water by underwater superoleophobic graphene oxide-coated cotton. Cellulose, 2017, 24, 5605-5614.	4.9	10

Shun Guo

#	Article	IF	CITATIONS
19	Rare earth texture analysis of rectangular extruded Mg alloys and a comparison of different alloying adding ways. Rare Metals, 2016, 35, 850-857.	7.1	2
20	Microstructural evolution and mechanical behavior of metastable β-type Ti–30Nb–1Mo–4Sn alloy with Iow modulus and high strength. Progress in Natural Science: Materials International, 2015, 25, 414-418.	4.4	7
21	Design and fabrication of a metastable \hat{l}^2 -type titanium alloy with ultralow elastic modulus and high strength. Scientific Reports, 2015, 5, 14688.	3.3	100
22	Wear response of metastable β-type Ti–25Nb–2Mo–4Sn alloy for biomedical applications. Rare Metals, 2015, 34, 564-568.	7.1	12
23	A metastable β-type Ti–Nb binary alloy with low modulus and high strength. Journal of Alloys and Compounds, 2015, 644, 411-415.	5.5	50
24	Tribological properties of Cu-based composites with S-doped NbSe2. Rare Metals, 2015, 34, 407-412.	7.1	7
25	Effect of thermo-mechanical treatment on mechanical and elastic properties of Ti–36Nb–5Zr alloy. Progress in Natural Science: Materials International, 2015, 25, 229-235.	4.4	13
26	Metastable β-type Ti-30Nb-1Mo-4Sn Alloy with Ultralow Young's Modulus and High Strength. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 547-550.	2.2	16
27	α′ martensite Ti–10Nb–2Mo–4Sn alloy with ultralow elastic modulus and High strength. Materials Letters, 2014, 133, 236-239.	2.6	18
28	Possible contribution of low shear modulus <i>C</i> 44 to the low Young's modulus of Ti-36Nb-5Zr alloy. Applied Physics Letters, 2014, 105, .	3.3	10
29	Direct evidence for competition between metastable ω and equilibrium α phases in aged β-type Ti alloys. Rare Metals, 2014, 33, 390-393.	7.1	2
30	A β-type TiNbZr alloy with low modulus and high strength for biomedical applications. Progress in Natural Science: Materials International, 2014, 24, 157-162.	4.4	44
31	Microstructural evolution and mechanical behavior of metastable β-type Ti–25Nb–2Mo–4Sn alloy with high strength and low modulusMicrostructural evolution and mechanical behavior of metastable β-type Ti–25Nb–2Mo–4Sn alloy with high strength and low modulusretain–>. Progress in Natural Science: Materials International. 2013. 23. 174-182.	4.4	31
32	Suppression of isothermal ω phase by dislocation tangles and grain boundaries in metastable β-type titanium alloys. Journal of Alloys and Compounds, 2013, 550, 35-38.	5.5	29
33	A Novel Metastable Ti-25Nb-2Mo-4Sn Alloy with High Strength and Low Young's Modulus. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3447-3451.	2.2	23