James B Hurley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6106099/publications.pdf

Version: 2024-02-01

47 5,929 25 44
papers citations h-index g-index

56 56 56 12146
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
2	A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nature Genetics, 2001, 27, 94-98.	21.4	485
3	Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye. ELife, $2017, 6, .$	6.0	254
4	Glucose, lactate, and shuttling of metabolites in vertebrate retinas. Journal of Neuroscience Research, 2015, 93, 1079-1092.	2.9	182
5	Deregulated Myc Requires MondoA/Mlx for Metabolic Reprogramming and Tumorigenesis. Cancer Cell, 2015, 27, 271-285.	16.8	172
6	The Retinal Pigment Epithelium Utilizes Fatty Acids for Ketogenesis. Journal of Biological Chemistry, 2014, 289, 20570-20582.	3.4	136
7	Pyruvate kinase and aspartate-glutamate carrier distributions reveal key metabolic links between neurons and glia in retina. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15579-15584.	7.1	112
8	Flow of energy in the outer retina in darkness and in light. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8599-8604.	7.1	97
9	Reductive carboxylation is a major metabolic pathway in the retinal pigment epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14710-14715.	7.1	94
10	Identification of a Zebrafish Cone Photoreceptor–Specific Promoter and Genetic Rescue of Achromatopsia in thenofMutant., 2007, 48, 522.		92
11	Phototransduction Influences Metabolic Flux and Nucleotide Metabolism in Mouse Retina. Journal of Biological Chemistry, 2016, 291, 4698-4710.	3.4	87
12	Functional characterization of missense mutations at codon 838 in retinal guanylate cyclase correlates with disease severity in patients with autosomal dominant cone-rod dystrophy. Human Molecular Genetics, 2000, 9, 3065-3073.	2.9	83
13	Loss of MPC1 reprograms retinal metabolism to impair visual function. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3530-3535.	7.1	83
14	Reprogramming metabolism by targeting sirtuin 6 attenuates retinal degeneration. Journal of Clinical Investigation, 2016, 126, 4659-4673.	8.2	82
15	Inhibition of Mitochondrial Pyruvate Transport by Zaprinast Causes Massive Accumulation of Aspartate at the Expense of Glutamate in the Retina. Journal of Biological Chemistry, 2013, 288, 36129-36140.	3.4	72
16	Human retinal pigment epithelial cells prefer proline as a nutrient and transport metabolic intermediates to the retinal side. Journal of Biological Chemistry, 2017, 292, 12895-12905.	3.4	68
17	Retina Metabolism and Metabolism in the Pigmented Epithelium: A Busy Intersection. Annual Review of Vision Science, 2021, 7, 665-692.	4.4	63
18	Succinate Can Shuttle Reducing Power from the Hypoxic Retina to the O2-Rich Pigment Epithelium. Cell Reports, 2020, 31, 107606.	6.4	62

#	Article	IF	CITATIONS
19	Probing Metabolism in the Intact Retina Using Stable Isotope Tracers. Methods in Enzymology, 2015, 561, 149-170.	1.0	59
20	Cytosolic reducing power preserves glutamate in retina. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18501-18506.	7.1	53
21	Pyruvate kinase M2 regulates photoreceptor structure, function, and viability. Cell Death and Disease, 2018, 9, 240.	6.3	46
22	Mitochondria Maintain Distinct Ca ²⁺ Pools in Cone Photoreceptors. Journal of Neuroscience, 2017, 37, 2061-2072.	3.6	40
23	Daily mitochondrial dynamics in cone photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28816-28827.	7.1	36
24	Affinities of bovine photoreceptor cGMP phosphodiesterases for rod and cone inhibitory subunits. FEBS Letters, 1993, 318, 157-161.	2.8	33
25	Normal Light Response, Photoreceptor Integrity, and Rhodopsin Dephosphorylation in Mice Lacking Both Protein Phosphatases with EF Hands (PPEF-1 and PPEF-2). Molecular and Cellular Biology, 2001, 21, 8605-8614.	2.3	31
26	Scotopic and Photopic Visual Thresholds and Spatial and Temporal Discrimination Evaluated by Behavior of Mice in a Water Maze. Photochemistry and Photobiology, 2006, 82, 1489-1494.	2.5	28
27	Increasing Ca2+ in photoreceptor mitochondria alters metabolites, accelerates photoresponse recovery, and reveals adaptations to mitochondrial stress. Cell Death and Differentiation, 2020, 27, 1067-1085.	11.2	27
28	Shedding Light on Adaptation. Journal of General Physiology, 2002, 119, 125-128.	1.9	26
29	Impact of euthanasia, dissection and postmortem delay on metabolic profile in mouse retina and RPE/choroid. Experimental Eye Research, 2018, 174, 113-120.	2.6	25
30	Mitochondrial Calcium Uniporter (MCU) deficiency reveals an alternate path for Ca2+ uptake in photoreceptor mitochondria. Scientific Reports, 2020, 10, 16041.	3.3	21
31	Monitoring calciumâ€induced conformational changes in recoverin by electrospray mass spectrometry. Protein Science, 1997, 6, 843-850.	7.6	20
32	How Excessive cGMP Impacts Metabolic Proteins in Retinas at the Onset of Degeneration. Advances in Experimental Medicine and Biology, 2018, 1074, 289-295.	1.6	16
33	Non-photopic and photopic visual cycles differentially regulate immediate, early, and late phases of cone photoreceptor-mediated vision. Journal of Biological Chemistry, 2020, 295, 6482-6497.	3.4	15
34	Succinate metabolism in the retinal pigment epithelium uncouples respiration from ATP synthesis. Cell Reports, 2022, 39, 110917.	6.4	14
35	Effect of selectively knocking down key metabolic genes in MÃ 1 /4ller glia on photoreceptor health. Glia, 2021, 69, 1966-1986.	4.9	13
36	Monocarboxylate Transporter 1 (MCT1) Mediates Succinate Export in the Retina., 2022, 63, 1.		11

#	ARTICLE	IF	CITATIONS
37	Absence of retbindin blocks glycolytic flux, disrupts metabolic homeostasis, and leads to photoreceptor degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
38	Mitochondria: The Retina's Achilles' Heel in AMD. Advances in Experimental Medicine and Biology, 2021, 1256, 237-264.	1.6	9
39	Deficient glucose and glutamine metabolism in knockout mice contributes to altered visual function. Molecular Vision, 2016, 22, 1198-1212.	1.1	9
40	Fluidics system for resolving concentration-dependent effects of dissolved gases on tissue metabolism. ELife, 2021, 10, .	6.0	8
41	Extracellular matrix dysfunction in Sorsby patient-derived retinal pigment epithelium. Experimental Eye Research, 2022, 215, 108899.	2.6	6
42	Warburg's vision. ELife, 2017, 6, .	6.0	5
43	An Analysis of Metabolic Changes in the Retina and Retinal Pigment Epithelium of Aging Mice. , 2021, 62, 20.		5
44	Recoverin and Ca ²⁺ in vertebrate phototransduction. Behavioral and Brain Sciences, 1995, 18, 425-428.	0.7	3
45	Preparing Fresh Retinal Slices from Adult Zebrafish for Ex Vivo Imaging Experiments. Journal of Visualized Experiments, 2018, , .	0.3	3
46	Retinal disease: How to use proteomics to speed up diagnosis and metabolomics to slow down degeneration. EBioMedicine, 2020, 53, 102687.	6.1	3
47	Recoverin, a calcium-binding protein in photoreceptors. Behavioral and Brain Sciences, 1995, 18, 497-498.	0.7	2