Paul D Esker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6105751/publications.pdf Version: 2024-02-01

DALLI D FSKED

#	Article	IF	CITATIONS
1	The global burden of pathogens and pests on major food crops. Nature Ecology and Evolution, 2019, 3, 430-439.	3.4	1,731
2	Soybean Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada, from 2010 to 2014. Plant Health Progress, 2017, 18, 19-27.	0.8	323
3	Biology, Yield loss and Control of Sclerotinia Stem Rot of Soybean. Journal of Integrated Pest Management, 2012, 3, 1-7.	0.9	181
4	Dissecting the economic impact of soybean diseases in the United States over two decades. PLoS ONE, 2020, 15, e0231141.	1.1	125
5	Efficacy and Stability of Integrating Fungicide and Cultivar Resistance to Manage Fusarium Head Blight and Deoxynivalenol in Wheat. Plant Disease, 2012, 96, 957-967.	0.7	114
6	Oomycete Species Associated with Soybean Seedlings in North America—Part I: Identification and Pathogenicity Characterization. Phytopathology, 2017, 107, 280-292.	1.1	99
7	Disease Assessment Concepts and the Advancements Made in Improving the Accuracy and Precision of Plant Disease Data. European Journal of Plant Pathology, 2006, 115, 95-103.	0.8	91
8	Meta-Analysis of Yield Response of Hybrid Field Corn to Foliar Fungicides in the U.S. Corn Belt. Phytopathology, 2011, 101, 1122-1132.	1.1	90
9	Genetic Gain × Management Interactions in Soybean: I. Planting Date. Crop Science, 2013, 53, 1128-1138.	0.8	86
10	Soybean Yield Partitioning Changes Revealed by Genetic Gain and Seeding Rate Interactions. Agronomy Journal, 2014, 106, 1631-1642.	0.9	86
11	Oomycete Species Associated with Soybean Seedlings in North America—Part II: Diversity and Ecology in Relation to Environmental and Edaphic Factors. Phytopathology, 2017, 107, 293-304.	1.1	83
12	Beyond Yield: Plant Disease in the Context of Ecosystem Services. Phytopathology, 2009, 99, 1228-1236.	1.1	81
13	The Role of Psychophysics in Phytopathology: The Weber–Fechner Law Revisited. European Journal of Plant Pathology, 2006, 114, 199-213.	0.8	80
14	Crop health and its global impacts on the components of food security. Food Security, 2017, 9, 311-327.	2.4	68
15	Neonicotinoid seed treatments of soybean provide negligible benefits to US farmers. Scientific Reports, 2019, 9, 11207.	1.6	62
16	Quantitative review of fungicide efficacy trials for managing soybean rust in Brazil. Crop Protection, 2009, 28, 774-782.	1.0	56
17	Diseases of Pyrethrum in Tasmania: Challenges and Prospects for Management. Plant Disease, 2008, 92, 1260-1272.	0.7	53
18	Meta-Analysis to Determine the Effects of Plant Disease Management Measures: Review and Case Studies on Soybean and Apple. Phytopathology, 2011, 101, 31-41.	1.1	50

#	Article	IF	CITATIONS
19	Sowing Uncertainty: What We Do and Don't Know about the Planting of Pesticide-Treated Seed. BioScience, 2020, 70, 390-403.	2.2	50
20	Spatiotemporal Description of Epidemics Caused by Phoma ligulicola in Tasmanian Pyrethrum Fields. Phytopathology, 2005, 95, 648-658.	1.1	49
21	Probability of Yield Response and Breaking Even for Soybean Seed Treatments. Crop Science, 2012, 52, 351-359.	0.8	49
22	A Coordinated Effort to Manage Soybean Rust in North America: A Success Story in Soybean Disease Monitoring. Plant Disease, 2014, 98, 864-875.	0.7	46
23	Physiological and Phenological Responses of Historical Soybean Cultivar Releases to Earlier Planting. Crop Science, 2014, 54, 804-816.	0.8	45
24	The Uniqueness of the Soybean Rust Pathosystem: An Improved Understanding of the Risk in Different Regions of the World. Plant Disease, 2010, 94, 796-806.	0.7	44
25	Genetic Gain × Management Interactions in Soybean: II. Nitrogen Utilization. Crop Science, 2014, 54, 340-348.	0.8	40
26	Effect of Maize Hybrid and Foliar Fungicides on Yield Under Low Foliar Disease Severity Conditions. Phytopathology, 2015, 105, 1080-1089.	1.1	39
27	Concepts, approaches, and avenues for modelling crop health and crop losses. European Journal of Agronomy, 2018, 100, 4-18.	1.9	39
28	Manipulating Wild and Tamed Phytobiomes: Challenges and Opportunities. Phytobiomes Journal, 2019, 3, 3-21.	1.4	38
29	Risk Factors for Crop Health Under Global Change and Agricultural Shifts: A Framework of Analyses Using Rice in Tropical and Subtropical Asia as a Model. Phytopathology, 2011, 101, 696-709.	1.1	36
30	Meta-Analysis of the Effects of QoI and DMI Fungicide Combinations on Fusarium Head Blight and Deoxynivalenol in Wheat. Plant Disease, 2018, 102, 2602-2615.	0.7	35
31	Overwintering of <i>Sclerotium rolfsii</i> and <i>S. rolfsii</i> var. <i>delphinii</i> in Different Latitudes of the United States. Plant Disease, 2008, 92, 719-724.	0.7	34
32	Crop Rotation and Management Effect on <i>Fusarium</i> spp. Populations. Crop Science, 2015, 55, 365-376.	0.8	34
33	Effect of Glyphosate Application on Sudden Death Syndrome of Glyphosate-Resistant Soybean Under Field Conditions. Plant Disease, 2015, 99, 347-354.	0.7	32
34	Effects of Pre- and Postanthesis Applications of Demethylation Inhibitor Fungicides on Fusarium Head Blight and Deoxynivalenol in Spring and Winter Wheat. Plant Disease, 2018, 102, 2500-2510.	0.7	32
35	Seasonal Patterns of Aster Leafhopper (Hemiptera: Cicadellidae) Abundance and Aster Yellows Phytoplasma Infectivity in Wisconsin Carrot Fields. Environmental Entomology, 2013, 42, 491-502.	0.7	31
36	Tillage, Crop Rotation, and Hybrid Effects on Residue and Corn Anthracnose Occurrence in Wisconsin. Plant Disease, 2011, 95, 601-610.	0.7	30

#	Article	IF	CITATIONS
37	Comparison of Models for Forecasting of Stewart's Disease of Corn in Iowa. Plant Disease, 2006, 90, 1353-1357.	0.7	27
38	A phytopathometry glossary for the twenty-first century: towards consistency and precision in intra- and inter-disciplinary dialogues. Tropical Plant Pathology, 2022, 47, 14-24.	0.8	27
39	Use of Survival Analysis to Determine the Postincubation Time-to-Death of Papaya Due to Yellow Crinkle Disease in Australia. Plant Disease, 2006, 90, 102-107.	0.7	25
40	Meteorological factors and Asian soybean rust epidemics: a systems approach and implications for risk assessment. Scientia Agricola, 2008, 65, 88-97.	0.6	25
41	Effect of Location, Cultivar, and Diseases on Grain Yield of Soft Red Winter Wheat in Wisconsin. Plant Disease, 2011, 95, 1401-1406.	0.7	25
42	Temporal Dynamics of Corn Flea Beetle Populations Infested with Pantoea stewartii, Causal Agent of Stewart's Disease of Corn. Phytopathology, 2003, 93, 210-218.	1.1	24
43	Quantifying the Feeding Periods Required by Corn Flea Beetles to Acquire and Transmit Pantoea stewartii. Plant Disease, 2006, 90, 319-324.	0.7	24
44	Visual and Radiometric Assessments for Yield Losses Caused by Ray Blight in Pyrethrum. Crop Science, 2008, 48, 343-352.	0.8	21
45	Site-Specific Risk Factors for Ray Blight in Tasmanian Pyrethrum Fields. Plant Disease, 2009, 93, 229-237.	0.7	21
46	Production situations as drivers of crop health: evidence and implications. Plant Pathology, 2017, 66, 867-876.	1.2	21
47	Quantifying Loss Caused by Ray Blight Disease in Tasmanian Pyrethrum Fields. Plant Disease, 2007, 91, 1116-1121.	0.7	20
48	Revisiting Fungicide-Based Management Guidelines for Leaf Blotch Diseases in Soft Red Winter Wheat. Plant Disease, 2015, 99, 1434-1444.	0.7	19
49	Modeling the relationship between estimated fungicide use and disease-associated yield losses of soybean in the United States I: Foliar fungicides vs foliar diseases. PLoS ONE, 2020, 15, e0234390.	1.1	19
50	<i>Fusarium graminearum</i> Species Complex: A Bibliographic Analysis and Web-Accessible Database for Global Mapping of Species and Trichothecene Toxin Chemotypes. Phytopathology, 2022, 112, 741-751.	1.1	18
51	Assessing the Risk of Stewart's Disease of Corn Through Improved Knowledge of the Role of the Corn Flea Beetle Vector. Phytopathology, 2002, 92, 668-670.	1.1	16
52	Use of geospatially-referenced disease and weather data to improve site-specific forecasts for Stewart's disease of corn in the US corn belt. Computers and Electronics in Agriculture, 2002, 37, 7-14.	3.7	16
53	Population Densities of Corn Flea Beetle (Coleoptera: Chrysomelidae) and Incidence of Stewart's Wilt in Sweet Corn. Journal of Economic Entomology, 2005, 98, 673-682	0.8	15
54	Disease assessment concepts and the advancements made in improving the accuracy and precision of plant disease data. , 2006, , 95-103.		15

#	Article	IF	CITATIONS
55	Soybean Yield and Heterodera Glycines Response to Rotation, Tillage, and Genetic Resistance. Agronomy Journal, 2011, 103, 1604-1609.	0.9	15
56	Modeling Yield Losses and Fungicide Profitability for Managing Fusarium Head Blight in Brazilian Spring Wheat. Phytopathology, 2020, 110, 370-378.	1.1	15
57	Does the <i>P</i> Value Have a Future in Plant Pathology?. Phytopathology, 2015, 105, 1400-1407.	1.1	14
58	Temporal Distribution of <i>Chaetocnema pulicaria</i> (Coleoptera: Chrysomelidae) Populations in Iowa. Journal of Economic Entomology, 2002, 95, 739-747.	0.8	13
59	Use of a Multispectral Radiometer for Noninvasive Assessments of Foliar Disease Caused by Ray Blight in Pyrethrum. Plant Disease, 2007, 91, 1397-1406.	0.7	13
60	Yield Response to Crop/Genotype Rotations and Fungicide Use to Manage Fusarium â€related Diseases. Crop Science, 2015, 55, 889-898.	0.8	13
61	Statistical Power in Plant Pathology Research. Phytopathology, 2018, 108, 15-22.	1.1	13
62	Distribution and diversity of begomoviruses in tomato and sweet pepper plants in Costa Rica. Annals of Applied Biology, 2018, 172, 20-32.	1.3	12
63	Seasonal Phenology of Aphis glycines (Hemiptera: Aphididae) and Other Aphid Species in Cultivated Bean and Noncrop Habitats in Wisconsin. Journal of Economic Entomology, 2010, 103, 1670-1681.	0.8	10
64	Factors Influencing Aster Leafhopper (Hemiptera: Cicadellidae) Abundance and Aster Yellows Phytoplasma Infectivity in Wisconsin Carrot Fields. Environmental Entomology, 2013, 42, 477-490.	0.7	10
65	The Use of Reflectance Data for In-Season Soybean Yield Prediction. Agronomy Journal, 2014, 106, 1159-1168.	0.9	10
66	Perceptions of Midwestern Crop Advisors and Growers on Foliar Fungicide Adoption and Use in Maize. Phytopathology, 2018, 108, 1078-1088.	1.1	10
67	Genetic diversity and geographic distribution of <scp><i>Bemisia tabaci</i></scp> and <scp><i>Trialeurodes vaporariorum</i></scp> in Costa Rica. Annals of Applied Biology, 2019, 174, 248-261.	1.3	10
68	Prospects of alleviating early plantingâ€associated cold susceptibility of soybean using microbes: New insights from microbiome analysis. Journal of Agronomy and Crop Science, 2021, 207, 171-185.	1.7	9
69	Development of Ramulosis Disease of Cotton Under Controlled Environment and Field Conditions. Phytopathology, 2009, 99, 659-665.	1.1	8
70	Fungicide Management Does Not Affect the Rate of Genetic Gain in Soybean. Agronomy Journal, 2014, 106, 2043-2054.	0.9	8
71	Abiotic conditions outweigh microbial origin during bacterial assembly in soils. Environmental Microbiology, 2021, 23, 358-371.	1.8	8
72	Advancing agricultural research using machine learning algorithms. Scientific Reports, 2021, 11, 17879.	1.6	8

#	Article	IF	CITATIONS
73	Modeling Long-Term Trends in Russet Burbank Potato Growth and Development in Wisconsin. Agronomy, 2012, 2, 14-27.	1.3	7
74	Soybean Yield Response to Plant Distribution in Fusarium virguliforme Infested Soils. Agronomy Journal, 2011, 103, 1712-1716.	0.9	6
75	Spatial and spatiotemporal analysis of Meloidogyne hapla and Pratylenchus penetrans populations in commercial potato fields in New York, USA. Nematology, 2020, 23, 139-151.	0.2	4
76	An Application of Space-Time Analysis to Improve the Epidemiological Understanding of the Papaya-Papaya Yellow Crinkle Pathosystem. Plant Health Progress, 2007, 8, 65.	0.8	3
77	A machine learning interpretation of the contribution of foliar fungicides to soybean yield in the northâ€central United States. Scientific Reports, 2021, 11, 18769.	1.6	3
78	Modeling the relationship between estimated fungicide use and disease-associated yield losses of soybean in the United States II: Seed-applied fungicides vs seedling diseases. PLoS ONE, 2020, 15, e0244424.	1.1	3
79	Relationship between soybean yield from high and low yielding field sites and selected soil characteristics. , 2020, 3, e20126.		3
80	Soybean Roots and Soil From High- and Low-Yielding Field Sites Have Different Microbiome Composition. Frontiers in Microbiology, 2021, 12, 675352.	1.5	3
81	Fusarium head blight of small grains in Pennsylvania: unravelling species diversity, toxin types, growth and triazole sensitivity. Phytopathology, 2021, , .	1.1	2
82	Influence of Monocropping Brown Stem Rot–Resistant and –Susceptible Soybean Accessions on Soil and Stem Populations of Phialophora gregata f. sp. sojae. Plant Disease, 2009, 93, 1050-1058.	0.7	1
83	Application of a Rank-Based Method for Improved Cultivar Selection in Soft Red Winter Wheat. Plant Disease, 2011, 95, 1407-1413.	0.7	1
84	Genome-Wide Association Mapping Analyses Applied to Polyamines. Methods in Molecular Biology, 2018, 1694, 427-432.	0.4	0
85	A Profile of and Communication between Certified Crop Advisors and Maize Growers in the Midwest United States. SSRN Electronic Journal, 0, , .	0.4	0
86	Forrest W. Nutter, Jr.: a career in phytopathometry. Tropical Plant Pathology, 0, , 1.	0.8	0