
Rodorico Giorgi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6105318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid fibroin-nanocellulose composites for the consolidation of aged and historical silk. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127944.	2.3	11
2	Environmentally friendly ZnO/Castor oil polyurethane composites for the gas-phase adsorption of acetic acid. Journal of Colloid and Interface Science, 2022, 614, 451-459.	5.0	17
3	The use of nanostructured fluids for the removal of polymer coatings from a Nuxalk monumental carving – exploring the cleaning mechanism. Journal of Cultural Heritage, 2022, 55, 18-29.	1.5	4
4	Polyvinyl alcohol and allyl α, α'â€ŧrehalose copolymers for a sustainable strengthening of degraded paper. Journal of Applied Polymer Science, 2022, 139, 52011.	1.3	0
5	Influence of inâ€amphorae vinification on the molecular profile of Sangiovese and Cabernet Franc. Flavour and Fragrance Journal, 2022, 37, 219-233.	1.2	1
6	Cementitious materials containing nano-carriers and silica for the restoration of damaged concrete-based monuments. Journal of Cultural Heritage, 2021, 49, 59-69.	1.5	9
7	Jin Shofu Starch Nanoparticles for the Consolidation of Modern Paintings. ACS Applied Materials & Interfaces, 2021, 13, 37924-37936.	4.0	11
8	Selective removal of over-paintings from "Street Art―using an environmentally friendly nanostructured fluid loaded in highly retentive hydrogels. Journal of Colloid and Interface Science, 2021, 595, 187-201.	5.0	18
9	Assessment of aqueous cleaning of acrylic paints using innovative cryogels. Microchemical Journal, 2020, 152, 104311.	2.3	10
10	Removing Ingrained Soiling from Medieval Lime-based Wall Paintings Using Nanorestore Gel® Peggy 6 in Combination with Aqueous Cleaning Liquids. Studies in Conservation, 2020, 65, P284-P291.	0.6	6
11	Self-regenerated silk fibroin with controlled crystallinity for the reinforcement of silk. Journal of Colloid and Interface Science, 2020, 576, 230-240.	5.0	20
12	Innovative methods for the removal, and occasionally care, of pressure sensitive adhesive tapes from contemporary drawings. Heritage Science, 2020, 8, .	1.0	12
13	Nanomaterials for Combined Stabilisation and Deacidification of Cellulosic Materials—The Case of Iron-Tannate Dyed Cotton. Nanomaterials, 2020, 10, 900.	1.9	12
14	The use of surfactants in the cleaning of works of art. Current Opinion in Colloid and Interface Science, 2020, 45, 108-123.	3.4	27
15	PVA-based peelable films loaded with tetraethylenepentamine for the removal of corrosion products from bronze. Applied Materials Today, 2020, 19, 100549.	2.3	10
16	Twin-chain polymer networks loaded with nanostructured fluids for the selective removal of a non-original varnish from Picasso's "L'Atelier―at the Peggy Guggenheim Collection, Venice. Heritage Science, 2020, 8, .	1.0	22
17	Handheld surfaceâ€enhanced Raman scattering identification of dye chemical composition in feltâ€ŧip pen drawings. Journal of Raman Spectroscopy, 2019, 50, 222-231.	1.2	11
18	Raman Spectroscopy and Surface Enhanced Raman Scattering (SERS) for the Analysis of Blue and Black Writing Inks: Identification of Dye Content and Degradation Processes. Frontiers in Chemistry, 2019, 7, 727.	1.8	14

RODORICO GIORGI

#	Article	IF	CITATIONS
19	Understanding the structural degradation of South American historical silk: A Focal Plane Array (FPA) FTIR and multivariate analysis. Scientific Reports, 2019, 9, 17239.	1.6	22
20	Removing Polymeric Coatings With Nanostructured Fluids: Influence of Substrate, Nature of the Film, and Application Methodology. Frontiers in Materials, 2019, 6, .	1.2	16
21	Hybrid nano-composites for the consolidation of earthen masonry. Journal of Colloid and Interface Science, 2019, 539, 504-515.	5.0	30
22	Smart Soft Nanomaterials for Cleaning. , 2019, , 171-204.		10
23	Poly(vinyl alcohol)/poly(vinyl pyrrolidone) hydrogels for the cleaning of art. Journal of Colloid and Interface Science, 2019, 536, 339-348.	5.0	68
24	Polymer Film Dewetting by Water/Surfactant/Goodâ€Solvent Mixtures: A Mechanistic Insight and Its Implications for the Conservation of Cultural Heritage. Angewandte Chemie, 2018, 130, 7477-7481.	1.6	11
25	A combined Surface Enhanced Raman Spectroscopy (SERS)/UV–vis approach for the investigation of dye content in commercial felt tip pens inks. Talanta, 2018, 181, 448-453.	2.9	17
26	Nanomaterials for the Consolidation of Stone Artifacts. , 2018, , 151-173.		6
27	Mikroemulsionen, Micellen und funktionelle Gele: Erhaltung von Kunstwerken mit Kolloiden und weicher Materie. Angewandte Chemie, 2018, 130, 7417-7425.	1.6	1
28	Complex Fluids Confined into Semi-interpenetrated Chemical Hydrogels for the Cleaning of Classic Art: A Rheological and SAXS Study. ACS Applied Materials & Interfaces, 2018, 10, 19162-19172.	4.0	40
29	Film forming PVA-based cleaning systems for the removal of corrosion products from historical bronzes. Pure and Applied Chemistry, 2018, 90, 507-522.	0.9	7
30	Microemulsions, Micelles, and Functional Gels: How Colloids and Soft Matter Preserve Works of Art. Angewandte Chemie - International Edition, 2018, 57, 7296-7303.	7.2	68
31	Polymer Film Dewetting by Water/Surfactant/Goodâ€Solvent Mixtures: A Mechanistic Insight and Its Implications for the Conservation of Cultural Heritage. Angewandte Chemie - International Edition, 2018, 57, 7355-7359.	7.2	42
32	Characterization of the secondary structure of degummed Bombyx mori silk in modern and historical samples. Polymer Degradation and Stability, 2018, 157, 53-62.	2.7	30
33	Nonaqueous Microemulsion in the Bmim Tf ₂ N/Brij 30/ <i>n</i> -Nonane System: Structural Investigation and Application as Gold Nanoparticle Microreactor. Langmuir, 2018, 34, 12609-12618.	1.6	11
34	Alkyl carbonate solvents confined in poly (ethyl methacrylate) organogels for the removal of pressure sensitive tapes (PSTs) from contemporary drawings. Journal of Cultural Heritage, 2018, 34, 227-236.	1.5	19
35	Nanostructured fluids for the removal of graffiti–ÂA survey on 17 commercial spray-can paints. Journal of Cultural Heritage, 2018, 34, 218-226.	1.5	23
36	A Triton X-100-Based Microemulsion for the Removal of Hydrophobic Materials from Works of Art: SAXS Characterization and Application. Materials, 2018, 11, 1144.	1.3	29

Rodorico Giorgi

#	Article	IF	CITATIONS
37	Plasmonic colloidal pastes for surface-enhanced Raman spectroscopy (SERS) of historical felt-tip pens. RSC Advances, 2018, 8, 8365-8371.	1.7	9
38	La chimica dei nanocomposti e la loro applicazione al restauro dei manoscritti. Studi Di Archivistica, Bibliografia, Paleografia, 2018, , .	0.0	0
39	Organogels for the cleaning of artifacts. Pure and Applied Chemistry, 2017, 89, 3-17.	0.9	18
40	A stabilizer-free non-polar dispersion for the deacidification of contemporary art on paper. Journal of Cultural Heritage, 2017, 26, 44-52.	1.5	27
41	Nanofluids and chemical highly retentive hydrogels for controlled and selective removal of overpaintings and undesired graffiti from street art. Analytical and Bioanalytical Chemistry, 2017, 409, 3707-3712.	1.9	21
42	Hybrid nanocomposites made of diol-modified silanes and nanostructured calcium hydroxide. Applications to Alum-treated wood. Pure and Applied Chemistry, 2017, 89, 29-39.	0.9	13
43	The degradation of wall paintings and stone: Specific ion effects. Current Opinion in Colloid and Interface Science, 2016, 23, 66-71.	3.4	14
44	Confined Aqueous Media for the Cleaning of Cultural Heritage: Innovative Gels and Amphiphile-Based Nanofluids. , 2016, , 283-311.		7
45	Nanotechnologies for the restoration of alum-treated archaeological wood. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	17
46	Morpho-chemical characterization and surface properties of carcinogenic zeolite fibers. Journal of Hazardous Materials, 2016, 306, 140-148.	6.5	32
47	Calcium hydroxide nanoparticles from solvothermal reaction for the deacidification of degraded waterlogged wood. Journal of Colloid and Interface Science, 2016, 473, 1-8.	5.0	81
48	Nanomaterials for the cleaning and pH adjustment of vegetable-tanned leather. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	24
49	Calcium hydroxide nanoparticles in hydroalcoholic gelatin solutions (GeolNan) for the deacidification and strengthening of papers containing iron gall ink. Journal of Cultural Heritage, 2016, 18, 250-257.	1.5	28
50	Alkaline Nanoparticles for the Deacidification and pH Control of Books and Manuscripts. , 2016, , 253-281.		4
51	Oligonucleotide biofunctionalization enhances endothelial progenitor cell adhesion on cobalt/chromium stents. Journal of Biomedical Materials Research - Part A, 2015, 103, 3284-3292.	2.1	5
52	Cleaning of Easel Paintings. , 2015, , 83-116.		3
53	Amphiphile-based nanofludis for the removal of styrene/acrylate coatings: Cleaning of stucco decoration in the Uaxactun archeological site (Guatemala). Journal of Cultural Heritage, 2015, 16, 862-868.	1.5	20
54	Organogel formulations for the cleaning of easel paintings. Applied Physics A: Materials Science and Processing, 2015, 121, 857-868.	1.1	43

RODORICO GIORGI

#	Article	IF	CITATIONS
55	Consolidation of Wall Paintings and Stone. , 2015, , 15-59.		5
56	An amine-oxide surfactant-based microemulsion for the cleaning of works of art. Journal of Colloid and Interface Science, 2015, 440, 204-210.	5.0	40
57	Nanotechnologies in the Conservation of Cultural Heritage. , 2015, , .		59
58	Innovative Nanomaterials: Principles, Availability and Scopes. , 2015, , 1-14.		5
59	Cleaning of Wall Paintings and Stones. , 2015, , 61-82.		1
60	Commercial Ca(OH)2 nanoparticles for the consolidation of immovable works of art. Applied Physics A: Materials Science and Processing, 2014, 114, 723-732.	1.1	58
61	Calcium hydroxide nanoparticles for the conservation of cultural heritage: new formulations for the deacidification of cellulose-based artifacts. Applied Physics A: Materials Science and Processing, 2014, 114, 685-693.	1.1	84
62	Chemical semi-IPN hydrogels for the removal of adhesives from canvas paintings. Applied Physics A: Materials Science and Processing, 2014, 114, 705-710.	1.1	41
63	Antibacterial activity of silver nanoparticles grafted on stone surface. Environmental Science and Pollution Research, 2014, 21, 13278-13286.	2.7	42
64	Micelle, microemulsions, and gels for the conservation of cultural heritage. Advances in Colloid and Interface Science, 2014, 205, 361-371.	7.0	86
65	Characterization and degradation of poly(vinyl acetate)-based adhesives for canvas paintings. Polymer Degradation and Stability, 2014, 107, 314-320.	2.7	49
66	High-performance and anti-stain coating for porcelain stoneware tiles based on nanostructured zirconium compounds. Journal of Colloid and Interface Science, 2014, 432, 117-127.	5.0	8
67	Laser removal of mold growth from paper. Applied Physics A: Materials Science and Processing, 2014, 117, 253-259.	1.1	11
68	Innovative Hydrogels Based on Semi-Interpenetrating p(HEMA)/PVP Networks for the Cleaning of Water-Sensitive Cultural Heritage Artifacts. Langmuir, 2013, 29, 2746-2755.	1.6	137
69	Hydroxide nanoparticles for cultural heritage: Consolidation and protection of wall paintings and carbonate materials. Journal of Colloid and Interface Science, 2013, 392, 42-49.	5.0	180
70	Colloid and Materials Science for the Conservation of Cultural Heritage: Cleaning, Consolidation, and Deacidification. Langmuir, 2013, 29, 5110-5122.	1.6	125
71	Gels for the Conservation of Cultural Heritage. Materials Research Society Symposia Proceedings, 2012, 1418, 17.	0.1	7
72	Nanostructured Surfactant-Based Systems for the Removal of Polymers from Wall Paintings: A Small-Angle Neutron Scattering Study. Langmuir, 2012, 28, 15193-15202.	1.6	49

Rodorico Giorgi

#	Article	IF	CITATIONS
73	Physicochemical Characterization of Acrylamide/Bisacrylamide Hydrogels and Their Application for the Conservation of Easel Paintings. Langmuir, 2012, 28, 3952-3961.	1.6	66
74	Smart cleaning of cultural heritage: a new challenge for soft nanoscience. Nanoscale, 2012, 4, 42-53.	2.8	82
75	Alkaline Earth Hydroxide Nanoparticles for the Inhibition of Metal Gall Ink Corrosion. Restaurator, 2011, 32, .	0.2	11
76	Removal of acrylic coatings from works of art by means of nanofluids: understanding the mechanism at the nanoscale. Nanoscale, 2010, 2, 1723.	2.8	60
77	Nanoparticles for Cultural Heritage Conservation: Calcium and Barium Hydroxide Nanoparticles for Wall Painting Consolidation. Chemistry - A European Journal, 2010, 16, 9374-9382.	1.7	86
78	New Methodologies for the Conservation of Cultural Heritage: Micellar Solutions, Microemulsions, and Hydroxide Nanoparticles. Accounts of Chemical Research, 2010, 43, 695-704.	7.6	160
79	Hydroxide Nanoparticles for Deacidification and Concomitant Inhibition of Iron-Gall Ink Corrosion of Paper. Langmuir, 2010, 26, 19084-19090.	1.6	86
80	Nanoparticles of calcium hydroxide for wood deacidification: Decreasing the emissions of organic acid vapors in church organ environments. Journal of Cultural Heritage, 2009, 10, 206-213.	1.5	37
81	Soft condensed matter for the conservation of cultural heritage. Comptes Rendus Chimie, 2009, 12, 61-69.	0.2	30
82	Gels for the Conservation of Cultural Heritage. Langmuir, 2009, 25, 8373-8374.	1.6	36
83	Physico-chemical characterization and conservation issues of photographs dated between 1890 and 1910. Journal of Cultural Heritage, 2008, 9, 277-284.	1.5	21
84	Oil-in-Water Nanocontainers as Low Environmental Impact Cleaning Tools for Works of Art:Â Two Case Studies. Langmuir, 2007, 23, 6396-6403.	1.6	66
85	Competitive Surface Adsorption of Solvent Molecules and Compactness of Agglomeration in Calcium Hydroxide Nanoparticles. Langmuir, 2007, 23, 2330-2338.	1.6	31
86	Nanomagnetic Sponges for the Cleaning of Works of Art. Langmuir, 2007, 23, 8681-8685.	1.6	91
87	Nanotechnology for Vasa Wood De-Acidification. Macromolecular Symposia, 2006, 238, 30-36.	0.4	36
88	Nanotubes from a Vitamin C-Based Bolaamphiphile. Journal of the American Chemical Society, 2006, 128, 7209-7214.	6.6	65
89	Soft and hard nanomaterials for restoration and conservation of cultural heritage. Soft Matter, 2006, 2, 293.	1.2	170
90	Conservation of acid waterlogged shipwrecks: nanotechnologies for de-acidification. Applied Physics A: Materials Science and Processing, 2006, 83, 567-571.	1.1	31

RODORICO GIORGI

#	Article	IF	CITATIONS
91	THE MAYA SITE OF CALAKMUL: IN SITU PRESERVATION OF WALL PAINTINGS AND LIMESTONE USING NANOTECHNOLOGY. Studies in Conservation, 2006, 51, 162-169.	0.6	8
92	Spectroscopic Techniques in Cultural Heritage Conservation: A Survey. Applied Spectroscopy Reviews, 2005, 40, 187-228.	3.4	132
93	The influence of superplasticizers on the first steps of tricalcium silicate hydration studied by NMR techniques. Magnetic Resonance Imaging, 2005, 23, 277-284.	1.0	13
94	Nanoparticles of Calcium Hydroxide for Wood Conservation. The Deacidification of the Vasa Warship. Langmuir, 2005, 21, 10743-10748.	1.6	105
95	Nanoparticles of Mg(OH)2:Â Synthesis and Application to Paper Conservation. Langmuir, 2005, 21, 8495-8501.	1.6	170
96	Influence of Cellulosic Additives on Tricalcium Silicate Hydration:Â Nuclear Magnetic Resonance Relaxation Time Analysis. Journal of Physical Chemistry B, 2004, 108, 4869-4874.	1.2	17
97	A NEW METHOD FOR PAPER DEACIDIFICATION BASED ON CALCIUM HYDROXIDE DISPERSED IN NONAQUEOUS MEDIA. Studies in Conservation, 2002, 47, 69-73.	0.6	6
98	Nanotechnologies for Conservation of Cultural Heritage:  Paper and Canvas Deacidification. Langmuir, 2002, 18, 8198-8203.	1.6	164
99	Effects induced in marbles by water-repellent compounds: the NMR contribution. Applied Magnetic Resonance, 2002, 23, 63-73.	0.6	8
100	Colloidal Particles of Ca(OH)2:  Properties and Applications to Restoration of Frescoes. Langmuir, 2001, 17, 4251-4255.	1.6	184
101	Stable dispersions of Ca(OH)2 in aliphatic alcohols: properties and application in cultural heritage conservation. , 2001, , 68-72.		24
102	A New Method for Consolidating Wall Paintings Based on Dispersions of Lime in Alcohol. Studies in Conservation, 2000, 45, 154.	0.6	27
103	A New Method for Consolidating Wall Paintings Based on Dispersions of Lime in Alcohol. Studies in Conservation, 2000, 45, 154-161.	0.6	105