
Channing J Der

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6104751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Drugging the undruggable RAS: Mission Possible?. Nature Reviews Drug Discovery, 2014, 13, 828-851.	46.4	1,484
3	GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Reviews Molecular Cell Biology, 2005, 6, 167-180.	37.0	1,483
4	The Ras superfamily at a glance. Journal of Cell Science, 2005, 118, 843-846.	2.0	1,222
5	Increasing complexity of Ras signaling. Oncogene, 1998, 17, 1395-1413.	5.9	977
6	Understanding Ras: â€~it ain't over 'til it's over'. Trends in Cell Biology, 2000, 10, 147-154.	7.9	739
7	Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature, 1997, 390, 632-636.	27.8	683
8	Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy?. Nature Reviews Cancer, 2010, 10, 842-857.	28.4	654
9	BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell, 1993, 75, 175-185.	28.9	634
10	RAS isoforms and mutations in cancer at a glance. Journal of Cell Science, 2016, 129, 1287-92.	2.0	606
11	Ras history. Small GTPases, 2010, 1, 2-27.	1.6	586
12	KRAS: The Critical Driver and Therapeutic Target for Pancreatic Cancer. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031435.	6.2	563
13	KRAS: feeding pancreatic cancer proliferation. Trends in Biochemical Sciences, 2014, 39, 91-100.	7.5	546
14	Biological and biochemical properties of human rasH genes mutated at codon 61. Cell, 1986, 44, 167-176.	28.9	528
15	Requirement of NF-κB Activation to Suppress p53-Independent Apoptosis Induced by Oncogenic Ras. Science, 1997, 278, 1812-1815.	12.6	527
16	Rho-family GTPases: it's not only Rac and Rho (and I like it). Journal of Cell Science, 2004, 117, 1301-1312.	2.0	524
17	Increasing Complexity of the Ras Signaling Pathway. Journal of Biological Chemistry, 1998, 273, 19925-19928.	3.4	504
18	Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nature Medicine, 2019, 25, 628-640.	30.7	476

#	Article	IF	CITATIONS
19	ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. Journal of Cell Biology, 2003, 163, 583-595.	5.2	474
20	Functional independence of the epidermal growth factor receptor from a domain required for ligand-induced internalization and calcium regulation. Cell, 1989, 59, 33-43.	28.9	424
21	The Mitogen-activated Protein Kinase Phosphatases PAC1, MKP-1, and MKP-2 Have Unique Substrate Specificities and Reduced Activity in Vivo toward the ERK2 sevenmaker Mutation. Journal of Biological Chemistry, 1996, 271, 6497-6501.	3.4	408
22	The dark side of Ras: regulation of apoptosis. Oncogene, 2003, 22, 8999-9006.	5.9	396
23	The Ras branch of small Gtpases: Ras family members don't fall far from the tree. Current Opinion in Cell Biology, 2000, 12, 157-165.	5.4	381
24	Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes and Development, 2002, 16, 2045-2057.	5.9	373
25	Inhibition of Ras for cancer treatment: the search continues. Future Medicinal Chemistry, 2011, 3, 1787-1808.	2.3	349
26	Oncogenic Ha-Ras-induced Signaling Activates NF-κB Transcriptional Activity, Which Is Required for Cellular Transformation. Journal of Biological Chemistry, 1997, 272, 24113-24116.	3.4	344
27	The Ras signal transduction pathway. Cancer and Metastasis Reviews, 1994, 13, 67-89.	5.9	342
28	Rho family proteins and Ras transformation: the RHOad less traveled gets congested. Oncogene, 1998, 17, 1415-1438.	5.9	337
29	Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12879-12884.	7.1	334
30	Signaling Interplay in Ras Superfamily Function. Current Biology, 2005, 15, R563-R574.	3.9	332
31	Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell, 2005, 7, 533-545.	16.8	330
32	Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery?. Clinical Cancer Research, 2015, 21, 1819-1827.	7.0	323
33	Ras CAAX Peptidomimetic FTI-277 Selectively Blocks Oncogenic Ras Signaling by Inducing Cytoplasmic Accumulation of Inactive Ras-Raf Complexes. Journal of Biological Chemistry, 1995, 270, 26802-26806.	3.4	319
34	Honokiol, a Small Molecular Weight Natural Product, Inhibits Angiogenesis in Vitro and Tumor Growth in Vivo. Journal of Biological Chemistry, 2003, 278, 35501-35507.	3.4	314
35	The Nf2 Tumor Suppressor, Merlin, Functions in Rac-Dependent Signaling. Developmental Cell, 2001, 1, 63-72.	7.0	311
36	Drugging RAS: Know the enemy. Science, 2017, 355, 1158-1163.	12.6	300

#	Article	IF	CITATIONS
37	The coupling of α6β4integrin to Ras-MAP kinase pathways mediated by Shc controls keratinocyte proliferation. EMBO Journal, 1997, 16, 2365-2375.	7.8	297
38	Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nature Cell Biology, 2002, 4, 621-625.	10.3	288
39	Ras and Rho regulation of the cell cycle and oncogenesis. Cancer Letters, 2001, 171, 1-10.	7.2	277
40	Rho Family GTPase Modification and Dependence on CAAX Motif-signaled Posttranslational Modification. Journal of Biological Chemistry, 2008, 283, 25150-25163.	3.4	275
41	Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis?. Trends in Cell Biology, 2004, 14, 639-647.	7.9	274
42	Specificity and Mechanism of Action of EHT 1864, a Novel Small Molecule Inhibitor of Rac Family Small GTPases. Journal of Biological Chemistry, 2007, 282, 35666-35678.	3.4	274
43	Integration of Rac-dependent Regulation of Cyclin D1 Transcription through a Nuclear Factor-lºB-dependent Pathway. Journal of Biological Chemistry, 1999, 274, 25245-25249.	3.4	260
44	Role of a Mitogen-activated Protein Kinase Pathway in the Induction of Phase II Detoxifying Enzymes by Chemicals. Journal of Biological Chemistry, 1999, 274, 27545-27552.	3.4	257
45	Oncogenic Ras and its role in tumor cell invasion and metastasis. Seminars in Cancer Biology, 2004, 14, 105-114.	9.6	246
46	Personalized Medicine in Non–Small-Cell Lung Cancer: Is <i>KRAS</i> a Useful Marker in Selecting Patients for Epidermal Growth Factor Receptor–Targeted Therapy?. Journal of Clinical Oncology, 2010, 28, 4769-4777.	1.6	243
47	Vav2 Is an Activator of Cdc42, Rac1, and RhoA. Journal of Biological Chemistry, 2000, 275, 10141-10149.	3.4	226
48	Rnd Proteins Function as RhoA Antagonists by Activating p190 RhoGAP. Current Biology, 2003, 13, 1106-1115.	3.9	222
49	Regulation of RasCRP via a Phorbol Ester-Responsive C1 Domain. Molecular and Cellular Biology, 1998, 18, 6995-7008.	2.3	215
50	Ligand-dependent Dynamics and Intramolecular Signaling in a PDZ Domain. Journal of Molecular Biology, 2004, 335, 1105-1115.	4.2	215
51	Two Distinct Raf Domains Mediate Interaction with Ras. Journal of Biological Chemistry, 1995, 270, 9809-9812.	3.4	214
52	Divergent Roles for RalA and RalB in Malignant Growth of Human Pancreatic Carcinoma Cells. Current Biology, 2006, 16, 2385-2394.	3.9	212
53	Emerging concepts in the <i>Ras</i> superfamily of GTPâ€binding proteins. FASEB Journal, 1993, 7, 750-759.	0.5	206
54	Guanine nucleotide exchange factors: Activators of the Ras superfamily of proteins. BioEssays, 1995, 17, 395-404.	2.5	205

4

#	Article	IF	CITATIONS
55	A Six-Gene Signature Predicts Survival of Patients with Localized Pancreatic Ductal Adenocarcinoma. PLoS Medicine, 2010, 7, e1000307.	8.4	202
56	K-Ras Promotes Growth Transformation and Invasion of Immortalized Human Pancreatic Cells by Raf and Phosphatidylinositol 3-Kinase Signaling. Cancer Research, 2007, 67, 2098-2106.	0.9	197
57	Aberrant function of the Ras signal transduction pathway in human breast cancer. Breast Cancer Research and Treatment, 1995, 35, 133-144.	2.5	194
58	Ras Family Signaling: Therapeutic Targeting. Cancer Biology and Therapy, 2002, 1, 599-606.	3.4	191
59	Long-Term ERK Inhibition in KRAS-Mutant Pancreatic Cancer Is Associated with MYC Degradation and Senescence-like Growth Suppression. Cancer Cell, 2016, 29, 75-89.	16.8	191
60	Structural basis for the selective activation of Rho GTPases by Dbl exchange factors. Nature Structural Biology, 2002, 9, 468-475.	9.7	190
61	Involvement of Ras Activation in Human Breast Cancer Cell Signaling, Invasion, and Anoikis. Cancer Research, 2004, 64, 4585-4592.	0.9	184
62	[40] Biological assays for Ras transformation. Methods in Enzymology, 1995, 255, 395-412.	1.0	176
63	Integrin-mediated Activation of MEK and Mitogen-activated Protein Kinase Is Independent of Ras. Journal of Biological Chemistry, 1996, 271, 18122-18127.	3.4	169
64	Leukemia-Associated Rho Guanine Nucleotide Exchange Factor Promotes Gαq-Coupled Activation of RhoA. Molecular and Cellular Biology, 2002, 22, 4053-4061.	2.3	165
65	Splice Variants of Intersectin Are Components of the Endocytic Machinery in Neurons and Nonneuronal Cells. Journal of Biological Chemistry, 1999, 274, 15671-15677.	3.4	164
66	Altered gene products are associated with activation of cellular rasK genes in human lung and colon carcinomas. Cell, 1983, 32, 201-208.	28.9	160
67	The Ras-related Protein Rheb Is Farnesylated and Antagonizes Ras Signaling and Transformation. Journal of Biological Chemistry, 1997, 272, 10608-10615.	3.4	158
68	Searching for the elusive targets of farnesyltransferase inhibitors. Nature Reviews Cancer, 2003, 3, 945-951.	28.4	158
69	Rac1b, a tumor associated, constitutively active Rac1 splice variant, promotes cellular transformation. Oncogene, 2004, 23, 9369-9380.	5.9	157
70	P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nature Communications, 2011, 2, 555.	12.8	152
71	Increasing Complexity of Ras Signal Transduction: Involvement of Rho Family Proteins. Advances in Cancer Research, 1997, 72, 57-107.	5.0	150
72	The G12 family of heterotrimeric G proteins promotes breast cancer invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8173-8178.	7.1	150

#	Article	IF	CITATIONS
73	Activation of ras genes in human tumors does not affect localization, modification, or nucleotide binding properties of p21. Cell, 1984, 37, 151-158.	28.9	147
74	RERG Is a Novel ras-related, Estrogen-regulated and Growth-inhibitory Gene in Breast Cancer. Journal of Biological Chemistry, 2001, 276, 42259-42267.	3.4	147
75	KRAS Mutant Pancreatic Cancer: No Lone Path to an Effective Treatment. Cancers, 2016, 8, 45.	3.7	147
76	Dbl family proteins. Biochimica Et Biophysica Acta: Reviews on Cancer, 1997, 1332, F1-F23.	7.4	140
77	<i>KRAS/BRAF</i> mutation status and ERK1/2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal cancer. Molecular Cancer Therapeutics, 2009, 8, 834-843.	4.1	140
78	Isolation of a NCK-associated Kinase, PRK2, an SH3-binding Protein and Potential Effector of Rho Protein Signaling. Journal of Biological Chemistry, 1996, 271, 28772-28776.	3.4	139
79	Overexpression of Collagenase 1 (MMP-1) Is Mediated by the ERK Pathway in Invasive Melanoma Cells. Journal of Biological Chemistry, 2004, 279, 33168-33176.	3.4	137
80	Ras Interaction with Two Distinct Binding Domains in Raf-1 5 Be Required for Ras Transformation. Journal of Biological Chemistry, 1996, 271, 233-237.	3.4	136
81	Atypical KRASG12R Mutant Is Impaired in PI3K Signaling and Macropinocytosis in Pancreatic Cancer. Cancer Discovery, 2020, 10, 104-123.	9.4	131
82	Farnesyltransferase inhibitors and cancer treatment: targeting simply Ras?. Biochimica Et Biophysica Acta: Reviews on Cancer, 1997, 1333, F51-F71.	7.4	125
83	Farnesyltransferase inhibitors: promises and realities. Current Opinion in Pharmacology, 2002, 2, 388-393.	3.5	124
84	XPLN, a Guanine Nucleotide Exchange Factor for RhoA and RhoB, But Not RhoC. Journal of Biological Chemistry, 2002, 277, 42964-42972.	3.4	121
85	Oncogenic Neu/ErbB-2 Increases Ets, AP-1, and NF-kB-dependent Gene Expression, and Inhibiting Ets Activation Blocks Neu-mediated Cellular Transformation. Journal of Biological Chemistry, 1996, 271, 7992-7998.	3.4	120
86	Loss of Transgelin in Breast and Colon Tumors and in RIE-1 Cells by Ras Deregulation of Gene Expression through Raf-independent Pathways. Journal of Biological Chemistry, 2002, 277, 9790-9799.	3.4	118
87	The ras superfamily of GTPâ€binding proteins: guidelines on nomenclature. FASEB Journal, 1992, 6, 2512-2513.	0.5	116
88	DLCâ€1 suppresses nonâ€small cell lung cancer growth and invasion by RhoGAPâ€dependent and independent mechanisms. Molecular Carcinogenesis, 2008, 47, 326-337.	2.7	115
89	Leukemia-associated Rho Guanine Nucleotide Exchange Factor, a Dbl Family Protein Found Mutated in Leukemia, Causes Transformation by Activation of RhoA. Journal of Biological Chemistry, 2001, 276, 27145-27151.	3.4	112
90	Ral and Rheb GTPase Activating Proteins Integrate mTOR and GTPase Signaling in Aging, Autophagy, and Tumor Cell Invasion. Molecular Cell, 2014, 53, 209-220.	9.7	112

#	Article	IF	CITATIONS
91	KRAS Suppression-Induced Degradation of MYC Is Antagonized by a MEK5-ERK5 Compensatory Mechanism. Cancer Cell, 2018, 34, 807-822.e7.	16.8	112
92	14-3-3 ζ Negatively Regulates Raf-1 Activity by Interactions with the Raf-1 Cysteine-rich Domain. Journal of Biological Chemistry, 1997, 272, 20990-20993.	3.4	111
93	The thrombin receptor, PAR-1, causes transformation by activation of Rho-mediated signaling pathways. Oncogene, 2001, 20, 1953-1963.	5.9	111
94	M-Ras/R-Ras3, a Transforming Ras Protein Regulated by Sos1, GRF1, and p120 Ras GTPase-activating Protein, Interacts with the Putative Ras Effector AF6. Journal of Biological Chemistry, 1999, 274, 23850-23857.	3.4	110
95	Oncogenic Ras Blocks Anoikis by Activation of a Novel Effector Pathway Independent of Phosphatidylinositol 3-Kinase. Molecular and Cellular Biology, 2001, 21, 5488-5499.	2.3	109
96	Dependence of Dbl and Dbs Transformation on MEK and NF-κB Activation. Molecular and Cellular Biology, 1999, 19, 7759-7770.	2.3	108
97	ROCK1 and ROCK2 Are Required for Non-Small Cell Lung Cancer Anchorage-Independent Growth and Invasion. Cancer Research, 2012, 72, 5338-5347.	0.9	108
98	Targeting RAS -mutant Cancers: Is ERK the Key?. Trends in Cancer, 2015, 1, 183-198.	7.4	104
99	The role of wild type RAS isoforms in cancer. Seminars in Cell and Developmental Biology, 2016, 58, 60-69.	5.0	104
100	Persistent Signaling by Dysregulated Thrombin Receptor Trafficking Promotes Breast Carcinoma Cell Invasion. Molecular and Cellular Biology, 2004, 24, 1990-1999.	2.3	102
101	A Raf-independent Epidermal Growth Factor Receptor Autocrine Loop Is Necessary for Ras Transformation of Rat Intestinal Epithelial Cells. Journal of Biological Chemistry, 1997, 272, 18926-18931.	3.4	101
102	Aurora-A Phosphorylates, Activates, and Relocalizes the Small GTPase RalA. Molecular and Cellular Biology, 2010, 30, 508-523.	2.3	100
103	Altered RNA Splicing by Mutant p53 Activates Oncogenic RAS Signaling in Pancreatic Cancer. Cancer Cell, 2020, 38, 198-211.e8.	16.8	99
104	Identification and Characterization of an Activating TrkA Deletion Mutation in Acute Myeloid Leukemia. Molecular and Cellular Biology, 2000, 20, 8655-8666.	2.3	98
105	The RalGEF-Ral Effector Signaling Network: The Road Less Traveled for Anti-Ras Drug Discovery. Genes and Cancer, 2011, 2, 275-287.	1.9	98
106	Stimulation of p38 Phosphorylation and Activity by Arachidonic Acid in HeLa Cells, HL60 Promyelocytic Leukemic Cells, and Human Neutrophils. Journal of Biological Chemistry, 1998, 273, 19277-19282.	3.4	97
107	SGEF, a RhoG Guanine Nucleotide Exchange Factor that Stimulates Macropinocytosis. Molecular Biology of the Cell, 2004, 15, 3309-3319.	2.1	97
108	Ect2-Dependent rRNA Synthesis Is Required for KRAS-TRP53 -Driven Lung Adenocarcinoma. Cancer Cell, 2017, 31, 256-269.	16.8	97

#	Article	IF	CITATIONS
109	Role of MAP Kinases in the 1,25-Dihydroxyvitamin D3-induced Transactivation of the Rat Cytochrome P450C24 (CYP24) Promoter. Journal of Biological Chemistry, 2002, 277, 29643-29653.	3.4	96
110	GTP Binding by Class II Transactivator: Role in Nuclear Import. Science, 1999, 285, 1402-1405.	12.6	94
111	Characterization of EHT 1864, a Novel Small Molecule Inhibitor of Rac Family Small GTPases. Methods in Enzymology, 2008, 439, 111-129.	1.0	94
112	Nitric Oxide-Releasing Silica Nanoparticle Inhibition of Ovarian Cancer Cell Growth. Molecular Pharmaceutics, 2010, 7, 775-785.	4.6	94
113	Elucidation of Binding Determinants and Functional Consequences of Ras/Raf-Cysteine-rich Domain Interactions. Journal of Biological Chemistry, 2000, 275, 22172-22179.	3.4	93
114	p120 GAP Modulates Ras Activation of Jun Kinases and Transformation. Journal of Biological Chemistry, 1997, 272, 1677-1681.	3.4	91
115	Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth. Oncogene, 1999, 18, 3831-3845.	5.9	91
116	RhoG Signals in Parallel with Rac1 and Cdc42. Journal of Biological Chemistry, 2002, 277, 47810-47817.	3.4	91
117	Gain-of-Function <i>RHOA</i> Mutations Promote Focal Adhesion Kinase Activation and Dependency in Diffuse Gastric Cancer. Cancer Discovery, 2020, 10, 288-305.	9.4	91
118	[24] Biological assays for cellular transformation. Methods in Enzymology, 1994, 238, 277-294.	1.0	90
119	Activation of Phospholipase C-Îμ by Heterotrimeric G Protein Î ² γ-Subunits. Journal of Biological Chemistry, 2001, 276, 48257-48261.	3.4	90
120	Molecular Basis for Rho GTPase Signaling Specificity. Breast Cancer Research and Treatment, 2004, 84, 61-71.	2.5	90
121	Rho Family GTPases Regulate Mammary Epithelium Cell Growth and Metastasis Through Distinguishable Pathways. Molecular Medicine, 2001, 7, 816-830.	4.4	88
122	Ras-mediated Loss of the Pro-apoptotic Response Protein Par-4 Is Mediated by DNA Hypermethylation through Raf-independent and Raf-dependent Signaling Cascades in Epithelial Cells. Journal of Biological Chemistry, 2005, 280, 23363-23370.	3.4	87
123	Extracellular Signal-regulated Kinase (ERK) Phosphorylates Histone Deacetylase 6 (HDAC6) at Serine 1035 to Stimulate Cell Migration. Journal of Biological Chemistry, 2013, 288, 33156-33170.	3.4	86
124	Ral small GTPase signaling and oncogenesis: More than just 15minutes of fame. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2976-2988.	4.1	85
125	Transforming Potential of Dbl Family Proteins Correlates with Transcription from the Cyclin D1 Promoter but Not with Activation of Jun NH2-terminal Kinase, p38/Mpk2, Serum Response Factor, or c-Jun. Journal of Biological Chemistry, 1998, 273, 16739-16747.	3.4	84
126	Molecular basis for Rac1 recognition by guanine nucleotide exchange factors. Nature Structural Biology, 2001, 8, 1037-1041.	9.7	84

#	Article	IF	CITATIONS
127	Quantitative Analysis of the Effect of Phosphoinositide Interactions on the Function of Dbl Family Proteins. Journal of Biological Chemistry, 2001, 276, 45868-45875.	3.4	83
128	RasGRP4 Is a Novel Ras Activator Isolated from Acute Myeloid Leukemia. Journal of Biological Chemistry, 2002, 277, 30508-30514.	3.4	83
129	Release of autoinhibition of ASEF by APC leads to CDC42 activation and tumor suppression. Nature Structural and Molecular Biology, 2007, 14, 814-823.	8.2	83
130	Lack of Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Signaling Shows a New Type of Melanoma. Cancer Research, 2007, 67, 1502-1512.	0.9	80
131	Lack of correlation between the decreased expression of cell surface LETS protein and tumorigenicity in human cell hybrids. Cell, 1978, 15, 1241-1251.	28.9	79
132	The RalB Small GTPase Mediates Formation of Invadopodia through a GTPase-Activating Protein-Independent Function of the RalBP1/RLIP76 Effector. Molecular and Cellular Biology, 2012, 32, 1374-1386.	2.3	78
133	Rho GTPase-dependent transformation by G protein-coupled receptors. Oncogene, 2001, 20, 1547-1555.	5.9	77
134	Geranylgeranyltransferase I Inhibitors Target RalB To Inhibit Anchorage-Dependent Growth and Induce Apoptosis and RalA To Inhibit Anchorage-Independent Growth. Molecular and Cellular Biology, 2007, 27, 8003-8014.	2.3	77
135	A Landscape of Therapeutic Cooperativity in KRAS Mutant Cancers Reveals Principles for Controlling Tumor Evolution. Cell Reports, 2017, 20, 999-1015.	6.4	77
136	A tumor-specific membrane phosphoprotein marker in human cell hybrids. Cell, 1981, 26, 429-438.	28.9	76
137	Computational design of chemogenetic and optogenetic split proteins. Nature Communications, 2018, 9, 4042.	12.8	75
138	Expression Cloning of lsc, a Novel Oncogene with Structural Similarities to the Dbl Family of Guanine Nucleotide Exchange Factors. Journal of Biological Chemistry, 1996, 271, 18643-18650.	3.4	74
139	Atypical Mechanism of Regulation of the Wrch-1 Rho Family Small GTPase. Current Biology, 2004, 14, 2052-2056.	3.9	74
140	Activation and Involvement of Ral GTPases in Colorectal Cancer. Cancer Research, 2011, 71, 206-215.	0.9	74
141	Mas Oncogene Signaling and Transformation Require the Small GTP-Binding Protein Rac. Molecular and Cellular Biology, 1998, 18, 1225-1235.	2.3	73
142	Raf-independent Deregulation of p38 and JNK Mitogen-activated Protein Kinases Are Critical for Ras Transformation. Journal of Biological Chemistry, 2002, 277, 31808-31817.	3.4	73
143	Transforming Activity of the Rho Family GTPase, Wrch-1, a Wnt-regulated Cdc42 Homolog, Is Dependent on a Novel Carboxyl-terminal Palmitoylation Motif. Journal of Biological Chemistry, 2005, 280, 33055-33065.	3.4	72
144	K-Ras Promotes Angiogenesis Mediated by Immortalized Human Pancreatic Epithelial Cells through Mitogen-Activated Protein Kinase Signaling Pathways. Molecular Cancer Research, 2009, 7, 799-808.	3.4	72

#	Article	IF	CITATIONS
145	Oncogenic Activity of Ect2 Is Regulated through Protein Kinase CÎ ¹ -mediated Phosphorylation. Journal of Biological Chemistry, 2011, 286, 8149-8157.	3.4	72
146	G2A is an oncogenic G protein-coupled receptor. Oncogene, 2000, 19, 3866-3877.	5.9	71
147	Guanine nucleotide exchange factors: Activators of Ras superfamily proteins. Molecular Reproduction and Development, 1995, 42, 468-476.	2.0	70
148	Low-Dose Vertical Inhibition of the RAF-MEK-ERK Cascade Causes Apoptotic Death of KRAS Mutant Cancers. Cell Reports, 2020, 31, 107764.	6.4	69
149	Opposing Roles of the Extracellular Signal-Regulated Kinase and p38 Mitogen-Activated Protein Kinase Cascades in Ras-Mediated Downregulation of Tropomyosin. Molecular and Cellular Biology, 2002, 22, 2304-2317.	2.3	64
150	Identification and Characterization of Rain, a Novel Ras-interacting Protein with a Unique Subcellular Localization. Journal of Biological Chemistry, 2004, 279, 22353-22361.	3.4	63
151	Identification of a Novel RalGDS-related Protein as a Candidate Effector for Ras and Rap1. Journal of Biological Chemistry, 1996, 271, 29903-29908.	3.4	62
152	Cellular N-Ras Promotes Cell Survival by Downregulation of Jun N-Terminal Protein Kinase and p38. Molecular and Cellular Biology, 2002, 22, 1589-1606.	2.3	62
153	RAS, wanted dead or alive: Advances in targeting RAS mutant cancers. Science Signaling, 2020, 13, .	3.6	62
154	TC21 and Ras share indistinguishable transforming and differentiating activities. Oncogene, 1999, 18, 2107-2116.	5.9	60
155	Rho GTPase Transcriptome Analysis Reveals Oncogenic Roles for Rho GTPase-Activating Proteins in Basal-like Breast Cancers. Cancer Research, 2016, 76, 3826-3837.	0.9	60
156	CDC42 and FGD1 Cause Distinct Signaling and Transforming Activities. Molecular and Cellular Biology, 1998, 18, 4689-4697.	2.3	59
157	Interferon Regulatory Factor 7 Is Associated with Epstein-Barr Virus-Transformed Central Nervous System Lymphoma and Has Oncogenic Properties. Journal of Virology, 2004, 78, 12987-12995.	3.4	59
158	Critical and Distinct Roles of Amino- and Carboxyl-terminal Sequences in Regulation of the Biological Activity of the Chp Atypical Rho GTPase. Journal of Biological Chemistry, 2005, 280, 13784-13792.	3.4	59
159	A Non-farnesylated Ha-Ras Protein Can Be Palmitoylated and Trigger Potent Differentiation and Transformation. Journal of Biological Chemistry, 1999, 274, 1423-1431.	3.4	58
160	Aberrant Receptor Internalization and Enhanced FRS2-dependent Signaling Contribute to the Transforming Activity of the Fibroblast Growth Factor Receptor 2 IIIb C3 Isoform. Journal of Biological Chemistry, 2009, 284, 6227-6240.	3.4	58
161	Ras Effector Switching Promotes Divergent Cell Fates in C. elegans Vulval Patterning. Developmental Cell, 2011, 20, 84-96.	7.0	56
162	Selective Targeting of the KRAS G12C Mutant: Kicking KRAS When It's Down. Cancer Cell, 2016, 29, 251-253.	16.8	56

#	Article	IF	CITATIONS
163	Substrate Trapping Proteomics Reveals Targets of the βTrCP2/FBXW11 Ubiquitin Ligase. Molecular and Cellular Biology, 2015, 35, 167-181.	2.3	55
164	Differential regulation of SHC proteins by nerve growth factor in sensory neurons and PC12 cells. European Journal of Neuroscience, 1998, 10, 1995-2008.	2.6	54
165	Effects of Structure of Rho GTPase-activating Protein DLC-1 on Cell Morphology and Migration. Journal of Biological Chemistry, 2008, 283, 32762-32770.	3.4	53
166	Regulation of Rnd3 localization and function by protein kinase Cα-mediated phosphorylation. Biochemical Journal, 2009, 424, 153-161.	3.7	53
167	Mutant N-RAS Protects Colorectal Cancer Cells from Stress-Induced Apoptosis and Contributes to Cancer Development and Progression. Cancer Discovery, 2013, 3, 294-307.	9.4	53
168	Involvement of Fibroblast Growth Factor Receptor 2 Isoform Switching in Mammary Oncogenesis. Molecular Cancer Research, 2008, 6, 435-445.	3.4	51
169	The Role of Ect2 Nuclear RhoGEF Activity in Ovarian Cancer Cell Transformation. Genes and Cancer, 2013, 4, 460-475.	1.9	51
170	CRL4A-FBXW5–mediated degradation of DLC1 Rho GTPase-activating protein tumor suppressor promotes non-small cell lung cancer cell growth. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16868-16873.	7.1	51
171	Evaluation of the selectivity and sensitivity of isoform- and mutation-specific RAS antibodies. Science Signaling, 2017, 10, .	3.6	51
172	Involvement of the Switch 2 Domain of Ras in Its Interaction with Guanine Nucleotide Exchange Factors. Journal of Biological Chemistry, 1996, 271, 11076-11082.	3.4	50
173	Differential contribution of the ERK and JNK mitogen-activated protein kinase cascades to Ras transformation of HT1080 fibrosarcoma and DLD-1 colon carcinoma cells. Oncogene, 1999, 18, 1807-1817.	5.9	50
174	P-Rex1 directly activates RhoG to regulate GPCR-driven Rac signalling and actin polarity in neutrophils. Journal of Cell Science, 2014, 127, 2589-600.	2.0	50
175	R-Ras is regulated by activators and effectors distinct from those that control Ras function. Oncogene, 1997, 14, 133-143.	5.9	49
176	Involvement of NH2-terminal Sequences in the Negative Regulation of Vav Signaling and Transforming Activity. Journal of Biological Chemistry, 1999, 274, 30410-30418.	3.4	49
177	Requirement For C-terminal Sequences in Regulation of Ect2 Guanine Nucleotide Exchange Specificity and Transformation. Journal of Biological Chemistry, 2004, 279, 25226-25233.	3.4	49
178	Aberrant Overexpression of the Rgl2 Ral Small GTPase-specific Guanine Nucleotide Exchange Factor Promotes Pancreatic Cancer Growth through Ral-dependent and Ral-independent Mechanisms. Journal of Biological Chemistry, 2010, 285, 34729-34740.	3.4	49
179	Ras, but not Src, transformation of RIE-1 epithelial cells is dependent on activation of the mitogen-activated protein kinase cascade. Oncogene, 1998, 16, 2565-2573.	5.9	48
180	Dissection of Ras-Dependent Signaling Pathways Controlling Aggressive Tumor Growth of Human Fibrosarcoma Cells: Evidence for a Potential Novel Pathway. Molecular and Cellular Biology, 2000, 20, 9294-9306.	2.3	47

#	Article	IF	CITATIONS
181	Critical but Distinct Roles for the Pleckstrin Homology and Cysteine-Rich Domains as Positive Modulators of Vav2 Signaling and Transformation. Molecular and Cellular Biology, 2002, 22, 2487-2497.	2.3	47
182	Citron Kinase, a RhoA Effector, Enhances HIV-1 Virion Production by Modulating Exocytosis. Traffic, 2006, 7, 1643-1653.	2.7	47
183	Application of a MYC degradation screen identifies sensitivity to CDK9 inhibitors in KRAS-mutant pancreatic cancer. Science Signaling, 2019, 12, .	3.6	46
184	Involvement of Phosphatidylinositol 3-Kinase, but Not RalGDS, in TC21/R-Ras2-mediated Transformation. Journal of Biological Chemistry, 2002, 277, 9966-9975.	3.4	45
185	Targeting signal transduction in pancreatic cancer treatment. Expert Opinion on Therapeutic Targets, 2007, 11, 673-694.	3.4	45
186	Drug for an 'undruggable' protein. Nature, 2013, 497, 577-578.	27.8	45
187	Molecular Pathways: Targeting RAC–p21-Activated Serine–Threonine Kinase Signaling in RAS-Driven Cancers. Clinical Cancer Research, 2014, 20, 4740-4746.	7.0	43
188	Mammalian expression vectors for Ras family proteins: Generation and use of expression constructs to analyze Ras family function. Methods in Enzymology, 2001, 332, 3-36.	1.0	42
189	Enhanced cathepsin L expression is mediated by different Ras effector pathways in fibroblasts and epithelial cells. International Journal of Cancer, 2004, 112, 190-199.	5.1	41
190	Regulator of G-Protein Signaling 14 (RGS14) Is a Selective H-Ras Effector. PLoS ONE, 2009, 4, e4884.	2.5	40
191	Auto-inhibition of the Dbl Family Protein Tim by an N-terminal Helical Motif. Journal of Biological Chemistry, 2007, 282, 13813-13823.	3.4	39
192	Structure and biological effects of lipid modifications on proteins. Current Opinion in Cell Biology, 1992, 4, 629-636.	5.4	38
193	The Insert Region of Rac1 Is Essential for Membrane Ruffling but Not Cellular Transformation. Molecular and Cellular Biology, 2001, 21, 2847-2857.	2.3	38
194	Pharmacological inhibition of Ras-transformed epithelial cell growth is linked to down-regulation of epidermal growth factor–related peptides. Gastroenterology, 1999, 117, 567-576.	1.3	37
195	The Raf Inhibitor Paradox: Unexpected Consequences of Targeted Drugs. Cancer Cell, 2010, 17, 221-223.	16.8	37
196	Divergent Roles of CAAX Motif-signaled Posttranslational Modifications in the Regulation and Subcellular Localization of Ral GTPases. Journal of Biological Chemistry, 2015, 290, 22851-22861.	3.4	37
197	The Ect2 Rho Guanine Nucleotide Exchange Factor Is Essential for Early Mouse Development and Normal Cell Cytokinesis and Migration. Genes and Cancer, 2011, 2, 932-942.	1.9	36
198	ERK/MAPK Signaling Drives Overexpression of the Rac-GEF, PREX1, in BRAF- and NRAS-Mutant Melanoma. Molecular Cancer Research, 2016, 14, 1009-1018.	3.4	36

#	Article	IF	CITATIONS
199	A KRAS GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation. Journal of Biological Chemistry, 2017, 292, 4446-4456.	3.4	36
200	Modulation of HIV-1 Replication by a Novel RhoA Effector Activity. Journal of Immunology, 2000, 164, 5369-5374.	0.8	35
201	Multiple Sequence Elements Facilitate Chp Rho GTPase Subcellular Location, Membrane Association, and Transforming Activity. Molecular Biology of the Cell, 2006, 17, 3108-3121.	2.1	34
202	Genetic and functional characterization of putative Ras/Raf interaction inhibitors in C. elegans and mammalian cells. Journal of Molecular Signaling, 2010, 5, 2.	0.5	34
203	[21] Analysis of Ras protein expression in mammalian cells. Methods in Enzymology, 1995, 255, 195-220.	1.0	33
204	TEM4 is a junctional RhoGEF required for cell-cell adhesion, monolayer integrity, and barrier function. Journal of Cell Science, 2013, 126, 3271-7.	2.0	33
205	RhoGDI2 antagonizes ovarian carcinoma growth, invasion and metastasis. Small GTPases, 2011, 2, 202-210.	1.6	32
206	Alterations in the extracellular matrix organization associated with the reexpression of tumorigenicity in human cell hybrids. International Journal of Cancer, 1980, 26, 451-459.	5.1	31
207	Phosphorylation by Protein Kinase Cα Regulates RalB Small GTPase Protein Activation, Subcellular Localization, and Effector Utilization. Journal of Biological Chemistry, 2012, 287, 14827-14836.	3.4	31
208	Context-dependent roles of mutant B-Raf signaling in melanoma and colorectal carcinoma cell growth. Molecular Cancer Therapeutics, 2007, 6, 2220-2229.	4.1	30
209	Mist1+ gastric isthmus stem cells are regulated by Wnt5a and expand in response to injury and inflammation in mice. Gut, 2021, 70, 654-665.	12.1	30
210	The Src Homology 2 and Phosphotyrosine Binding Domains of the ShcC Adaptor Protein Function as Inhibitors of Mitogenic Signaling by the Epidermal Growth Factor Receptor. Journal of Biological Chemistry, 1998, 273, 20431-20437.	3.4	29
211	Filling GAPs in our knowledge: ARHGAP11A and RACGAP1 act as oncogenes in basal-like breast cancers. Small GTPases, 2018, 9, 290-296.	1.6	29
212	The ERK mitogen-activated protein kinase signaling network: the final frontier in RAS signal transduction. Biochemical Society Transactions, 2021, 49, 253-267.	3.4	29
213	rek, a Gene Expressed in Retina and Brain, Encodes a Receptor Tyrosine Kinase of the Axl/Tyro3 Family. Journal of Biological Chemistry, 1996, 271, 29049-29059.	3.4	28
214	Ras Inactivation of the Retinoblastoma Pathway by Distinct Mechanisms in NIH 3T3 Fibroblast and RIE-1 Epithelial Cells. Journal of Biological Chemistry, 2000, 275, 40916-40924.	3.4	28
215	Protein Kinase CK2α Maintains Extracellular Signal-regulated Kinase (ERK) Activity in a CK2α Kinase-independent Manner to Promote Resistance to Inhibitors of RAF and MEK but Not ERK in BRAF Mutant Melanoma. Journal of Biological Chemistry, 2016, 291, 17804-17815.	3.4	28
216	Critical Role of the Pleckstrin Homology Domain in Dbs Signaling and Growth Regulation. Journal of Biological Chemistry, 2003, 278, 21188-21196.	3.4	27

#	Article	IF	CITATIONS
217	Differential involvement of RalA and RalB in colorectal cancer. Small GTPases, 2012, 3, 126-130.	1.6	27
218	RAS and RHO family GTPase mutations in cancer: twin sons of different mothers?. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 386-407.	5.2	27
219	Identification of a Novel Actin-Binding Domain within the Rho Guanine Nucleotide Exchange Factor TEM4. PLoS ONE, 2012, 7, e41876.	2.5	27
220	Concurrent Inhibition of IGF1R and ERK Increases Pancreatic Cancer Sensitivity to Autophagy Inhibitors. Cancer Research, 2022, 82, 586-598.	0.9	27
221	Critical Role of the Pleckstrin Homology and Cysteine-rich Domains in Vav Signaling and Transforming Activity. Journal of Biological Chemistry, 2002, 277, 39350-39359.	3.4	26
222	Ras Signaling, Deregulation of Gene Expression and Oncogenesis. , 2004, , 189-208.		26
223	p68RacGAP Is a Novel GTPase-activating Protein That Interacts with Vascular Endothelial Zinc Finger-1 and Modulates Endothelial Cell Capillary Formation. Journal of Biological Chemistry, 2004, 279, 17963-17972.	3.4	26
224	Realâ€Time In Vitro Measurement of Intrinsic and Ras GAPâ€Mediated GTP Hydrolysis. Methods in Enzymology, 2006, 407, 9-22.	1.0	25
225	Real-time in vitro measurement of GTP hydrolysis. Methods, 2005, 37, 183-189.	3.8	23
226	Biochemical Analyses of the Wrch Atypical Rho Family GTPases. Methods in Enzymology, 2006, 406, 11-26.	1.0	23
227	Ras-Related Small GTPases RalA and RalB Regulate Cellular Survival After Ionizing Radiation. International Journal of Radiation Oncology Biology Physics, 2010, 78, 205-212.	0.8	23
228	The RAF Inhibitor Paradox Revisited. Cancer Cell, 2012, 21, 147-149.	16.8	23
229	Genetic and pharmacological inhibition of TTK impairs pancreatic cancer cell line growth by inducing lethal chromosomal instability. PLoS ONE, 2017, 12, e0174863.	2.5	23
230	RhoA biological activity is dependent on prenylation but independent of specific isoprenoid modification. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 2002, 13, 363-73.	0.8	23
231	CIB1 depletion impairs cell survival and tumor growth in triple-negative breast cancer. Breast Cancer Research and Treatment, 2015, 152, 337-346.	2.5	22
232	KRAS-dependent cancer cells promote survival by producing exosomes enriched in Survivin. Cancer Letters, 2021, 517, 66-77.	7.2	22
233	Posttranslational Lipid Modification of Rho Family Small GTPases. Methods in Molecular Biology, 2012, 827, 87-95.	0.9	22
234	Genetic and Pharmacologic Dissection of Ras Effector Utilization in Oncogenesis. Methods in Enzymology, 2006, 407, 195-217.	1.0	21

#	Article	IF	CITATIONS
235	Use of Retrovirus Expression of Interfering RNA to Determine the Contribution of Activated Kâ€Ras and Ras Effector Expression to Human Tumor Cell Growth. Methods in Enzymology, 2006, 407, 556-574.	1.0	21
236	ras Proto-Oncogene Activation in Human Malignancy. , 1995, , 17-52.		21
237	Vav Transformation Requires Activation of Multiple GTPases and Regulation of Gene Expression. Molecular Cancer Research, 2004, 2, 702-711.	3.4	21
238	Use of Caenorhabditis elegans to Evaluate Inhibitors of Ras Function In Vivo. Methods in Enzymology, 2008, 439, 425-449.	1.0	20
239	RAS Mutations Are Not Created Equal. Cancer Discovery, 2019, 9, 696-698.	9.4	20
240	Analysis of RAS protein interactions in living cells reveals a mechanism for pan-RAS depletion by membrane-targeted RAS binders. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12121-12130.	7.1	19
241	Aberrant Expression and Subcellular Localization of ECT2 Drives Colorectal Cancer Progression and Growth. Cancer Research, 2022, 82, 90-104.	0.9	19
242	[33] Targeting proteins to membranes using signal sequences for lipid modification. Methods in Enzymology, 1995, 250, 435-454.	1.0	18
243	Binding Specificity and Mutational Analysis of the Phosphotyrosine Binding Domain of the Brain-specific Adaptor Protein ShcC. Journal of Biological Chemistry, 1996, 271, 11787-11791.	3.4	18
244	Analysis of function and regulation of proteins that mediate signal transduction by use of lipid-modified plasma membrane-targeting sequences. Methods in Enzymology, 2000, 327, 331-350.	1.0	18
245	Role of MLK3-mediated Activation of p70 S6 Kinase in Rac1 Transformation. Journal of Biological Chemistry, 2002, 277, 4770-4777.	3.4	18
246	Role of the pleckstrin homology domain in intersectin-L Dbl homology domain activation of Cdc42 and signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1640, 61-68.	4.1	18
247	Stopping Ras in Its Tracks. Cell, 2007, 129, 855-857.	28.9	18
248	TLN-4601 suppresses growth and induces apoptosis of pancreatic carcinoma cells through inhibition of Ras-ERK MAPK signaling. Journal of Molecular Signaling, 2010, 5, 18.	0.5	18
249	The RhoGEF TEM4 Regulates Endothelial Cell Migration by Suppressing Actomyosin Contractility. PLoS ONE, 2013, 8, e66260.	2.5	18
250	Response to MLN8237 in Pancreatic Cancer Is Not Dependent on RalA Phosphorylation. Molecular Cancer Therapeutics, 2014, 13, 122-133.	4.1	18
251	Blocking autophagy to starve pancreatic cancer. Nature Reviews Molecular Cell Biology, 2019, 20, 265-265.	37.0	18
252	The ras family of oncogenes. Cancer Treatment and Research, 1989, 47, 73-119.	0.5	18

#	Article	IF	CITATIONS
253	Characterization of RERG: An Estrogenâ€Regulated Tumor Suppressor Gene. Methods in Enzymology, 2006, 407, 513-527.	1.0	16
254	Rasâ€Driven Transformation of Human Nestinâ€Positive Pancreatic Epithelial Cells. Methods in Enzymology, 2008, 439, 451-465.	1.0	16
255	Redundant Canonical and Noncanonical <i>Caenorhabditis elegans</i> p21-Activated Kinase Signaling Governs Distal Tip Cell Migrations. G3: Genes, Genomes, Genetics, 2013, 3, 181-195.	1.8	16
256	Selective deficiency in protein kinase C isoenzyme expression and inadequacy in mitogen-activated protein kinase activation in cord blood T cells. Biochemical Journal, 2003, 370, 497-503.	3.7	15
257	Mutant and Wild-type Ras: Co-conspirators in Cancer. Cancer Discovery, 2013, 3, 24-26.	9.4	15
258	Targeting p130Cas- and microtubule-dependent MYC regulation sensitizes pancreatic cancer to ERK MAPK inhibition. Cell Reports, 2021, 35, 109291.	6.4	15
259	Seeing is believing: Ras dimers observed in live cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9793-9794.	7.1	14
260	The KRAS-regulated kinome identifies WEE1 and ERK coinhibition as a potential therapeutic strategy in KRAS-mutant pancreatic cancer. Journal of Biological Chemistry, 2021, 297, 101335.	3.4	14
261	CHK1 protects oncogenic KRAS-expressing cells from DNA damage and is a target for pancreatic cancer treatment. Cell Reports, 2021, 37, 110060.	6.4	14
262	[23] Transcriptional activation analysis of oncogene function. Methods in Enzymology, 1994, 238, 271-276.	1.0	13
263	Analyses of transforming activity of rho family activators. Methods in Enzymology, 2000, 325, 425-441.	1.0	13
264	Ras-mediated intestinal epithelial cell transformation requires cyclooxygenase-2-induced prostaglandin E2 signaling. Molecular Carcinogenesis, 2007, 46, 958-970.	2.7	13
265	Essential role of Raf in Ras transformation and deregulation of matrix metalloproteinase expression in ovarian epithelial cells. Molecular Cancer Research, 2003, 1, 1077-88.	3.4	13
266	[6] Prenylation analysis of bacterially expressed and insect cell-expressed Ras and Ras-related proteins. Methods in Enzymology, 1995, 255, 46-60.	1.0	12
267	Are all KRAS mutations created equal?. Lancet Oncology, The, 2011, 12, 717-718.	10.7	12
268	Alterations in transformation efficiency by the ADPRT-inhibitor 3-aminobenzamide are oncogene specific. Carcinogenesis, 1989, 10, 383-385.	2.8	11
269	Binge Drinking: Macropinocytosis Promotes Tumorigenic Growth of RAS-Mutant Cancers. Trends in Biochemical Sciences, 2020, 45, 459-461.	7.5	11
270	The C. elegans Chp/Wrch Ortholog CHW-1 Contributes to LIN-18/Ryk and LIN-17/Frizzled Signaling in Cell Polarity. PLoS ONE, 2015, 10, e0133226.	2.5	11

#	Article	IF	CITATIONS
271	RHOA takes the RHOad less traveled to cancer. Trends in Cancer, 2022, 8, 655-669.	7.4	11
272	Activation ofras oncogenes in chemically transformed BALB/MK-2 mouse keratinocytes. Molecular Carcinogenesis, 1989, 2, 150-158.	2.7	10
273	GTPase traffic control. Nature, 2000, 405, 749-751.	27.8	9
274	Transformation by a nucleotide-activated P2Y receptor is mediated by activation of Gαi, Gαq and Rho-dependent signaling pathways. Journal of Molecular Signaling, 2010, 5, 11.	0.5	9
275	Concurrent Inhibition of ERK and Farnesyltransferase Suppresses the Growth of HRAS Mutant Head and Neck Squamous Cell Carcinoma. Molecular Cancer Therapeutics, 2022, 21, 762-774.	4.1	9
276	Inhibitors of the ERK Mitogen-Activated Protein Kinase Cascade for Targeting RAS Mutant Cancers. The Enzymes, 2013, 34 Pt. B, 67-106.	1.7	8
277	Targeting the ERK mitogen-activated protein kinase cascade for the treatment of KRAS-mutant pancreatic cancer. Advances in Cancer Research, 2022, 153, 101-130.	5.0	8
278	Tools to Study the Function of the Rasâ€Related, Estrogenâ€Regulated Growth Inhibitor in Breast Cancer. Methods in Enzymology, 2008, 439, 53-72.	1.0	7
279	Genome-wide DNA methylation analysis of KRAS mutant cell lines. Scientific Reports, 2020, 10, 10149.	3.3	7
280	Silencing of Oncogenic KRAS by Mutant-Selective Small Interfering RNA. ACS Pharmacology and Translational Science, 2021, 4, 703-712.	4.9	7
281	Activation of cellular p21 ras by myristoylation. Biochemical Society Transactions, 1989, 17, 867-869.	3.4	6
282	Romidepsin inhibits Ras-dependent growth transformation of NIH 3T3 fibroblasts and RIE-1 epithelial cells independently of Ras signaling inhibition. Journal of Molecular Signaling, 2009, 4, 5.	0.5	6
283	Lipid Modification of Ras Superfamily GTPases. The Enzymes, 2011, , 59-95.	1.7	6
284	Inhibitors of the ROCK Serine/Threonine Kinases. The Enzymes, 2013, 33 Pt A, 193-212.	1.7	6
285	Characterization of an Engineered Src Kinase to Study Src Signaling and Biology. Methods in Molecular Biology, 2016, 1360, 157-167.	0.9	6
286	Mechanisms of Targeted Therapy Resistance Take a De-TOR. Cancer Cell, 2013, 24, 284-286.	16.8	5
287	Mutant RAS Calms Stressed-Out Cancer Cells. Developmental Cell, 2017, 40, 120-122.	7.0	5
288	New Insights Into Pancreatic Cancer: Notes from a Virtual Meeting. Gastroenterology, 2021, 161, 785-791.	1.3	5

#	Article	IF	CITATIONS
289	Ras-Mediated Deregulation of Gene Expression and Contribution to Oncogenesis. , 0, , 77-100.		5
290	Targeting the Raf-MEK-ERK Mitogen-Activated Protein Kinase Cascade for the Treatment of RAS Mutant Cancers. , 2014, , 135-156.		5
291	CD45 and Src-Related Protein Tyrosine Kinases Regulate the T Cell Response to Phorbol Esters. Biochemical and Biophysical Research Communications, 1998, 243, 444-450.	2.1	4
292	[19] Analyses of TC21 /R-Ras2 signaling and biological activity. Methods in Enzymology, 2001, 333, 203-216.	1.0	4
293	Identification of ras-regulated genes by representational difference analysis. Methods in Enzymology, 2001, 332, 221-232.	1.0	4
294	Cellular Assays of Oncogene Transformation. , 2006, , 345-352.		4
295	Role of R-Ras in Cell Growth. , 2010, , 1753-1762.		3
296	Phase I study of hydroxychloroquine plus binimetinib in patients with metastatic pancreatic cancer (the HOPE trial) Journal of Clinical Oncology, 2022, 40, TPS634-TPS634.	1.6	3
297	KRASG12R-Independent Macropinocytosis in Pancreatic Cancer. Sub-Cellular Biochemistry, 2022, 98, 205-221.	2.4	3
298	The Roles of Ras Family Small GTPases in Breast Cancer. , 2010, , 2763-2772.		2
299	Preface. The Enzymes, 2013, 34 Pt. B, ix.	1.7	2
300	Validation of Isoform- and Mutation-Specific RAS Antibodies. Methods in Molecular Biology, 2021, 2262, 91-103.	0.9	2
301	Overview of Rho GTPase History. , 2010, , 3-27.		1
302	Ultrastructure of Human Pancreatic Cancer Cells Treated with a TBK1 Inhibitor. Microscopy and Microanalysis, 2019, 25, 1284-1285.	0.4	1
303	Filling in the GAPs in understanding RAS. Science, 2021, 374, 152-153.	12.6	1
304	Mutational Activation of KRAS and BRAF in Colorectal Cancer. , 2013, , 121-156.		1
305	Ras Proteins. , 2002, , 41-48.		0
306	Targeting Ras for Anticancer Drug Discovery. , 2010, , 2837-2857.		0

#	Article	IF	CITATIONS
307	RHOA mutations in cancer: Oncogenes or tumor suppressors?. , 2018, , 121-138.		0
308	G-proteins Small GTPases. , 2021, , 488-495.		0
309	Engineering threshold-based selection systems. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	0
310	Role of R-Ras in Cell Growth. , 2003, , 681-688.		0
311	Ras Stories: The State of the Art. , 2006, , 1-14.		0
312	Effectors of Ras-Mediated Oncogenesis. , 2006, , 121-142.		0
313	Anti-Ras Strategies for Cancer Treatment. , 2006, , 353-380.		0
314	RHO Proteins in RAS Signaling and Transformation. , 2006, , 143-167.		0
315	Dlc1. The AFCS-nature Molecule Pages, 0, , .	0.2	0
316	Rho Family Proteins. , 2011, , 3302-3308.		0
317	RAS Genes and Cancer. , 2014, , 157-171.		0
318	Rho Family Proteins. , 2016, , 4076-4082.		0
319	KRAS Suppression-Induced Degradation of MYC is Antagonized by a MEK5-ERK5 Compensatory Mechanism. SSRN Electronic Journal, 0, , .	0.4	0