Sara M Pires

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6104709/publications.pdf

Version: 2024-02-01

		159585	9	5266
78	5,376	30		68
papers	citations	h-index		g-index
83	83	83		6351
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	The increasing significance of disease severity in a burden of disease framework. Scandinavian Journal of Public Health, 2023, 51, 296-300.	2.3	5
2	Human health risk–benefit assessment of fish and other seafood: a scoping review. Critical Reviews in Food Science and Nutrition, 2022, 62, 7479-7502.	10.3	24
3	Burden of Disease of Dietary Exposure to Four Chemical Contaminants in Denmark, 2019. Exposure and Health, 2022, 14, 871-883.	4.9	4
4	Towards efficient use of data, models and tools in food microbiology. Current Opinion in Food Science, 2022, 46, 100834.	8.0	5
5	Novel foods as red meat replacers – an insight using Risk Benefit Assessment methods (the NovRBA) Tj ETQq1 1	1 8:784314	aggBT /Over
6	Mathematical modelling of Toxoplasma gondii transmission: A systematic review. Food and Waterborne Parasitology, 2021, 22, e00102.	2.7	14
7	Non-typhoidal human salmonellosis in Rio Grande do Sul, Brazil: A combined source attribution study of microbial subtyping and outbreak data. International Journal of Food Microbiology, 2021, 338, 108992.	4.7	8
8	The disease burden of peanut allergy in Denmark measured by disabilityâ€adjusted life years (DALYs). Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1583-1585.	5.7	4
9	Estimates of global disease burden associated with foodborne pathogens. , 2021, , 3-17.		3
10	Mushroom Poisoning Outbreaks — China, 2010–2020. China CDC Weekly, 2021, 3, 518-522.	2.3	33
11	Burden of Disease Methods: A Guide to Calculate COVID-19 Disability-Adjusted Life Years. International Journal of Public Health, 2021, 66, 619011.	2.3	47
12	The burden of disease of three food-associated heavy metals in clusters in the Danish population – Towards targeted public health strategies. Food and Chemical Toxicology, 2021, 150, 112072.	3.6	6
13	Burden of foodborne diseases: think global, act local. Current Opinion in Food Science, 2021, 39, 152-159.	8.0	84
14	Risk–Benefit Assessment of Consumption of Rice for Adult Men in China. Frontiers in Nutrition, 2021, 8, 694370.	3.7	16
15	Risk-Benefit Assessment of Cereal-Based Foods Consumed by Portuguese Children Aged 6 to 36 Months—A Case Study under the RiskBenefit4EU Project. Nutrients, 2021, 13, 3127.	4.1	3
16	Prevalence of Antimicrobial Resistant of <i>Vibrio parahaemolyticus</i> Isolated from Diarrheal Patients â€" Six PLADs, China, 2016â°'2020. China CDC Weekly, 2021, 3, 615-619.	2.3	2
17	Integration of various dimensions in food-based dietary guidelines via mathematical approaches: report of a DGE/FENS Workshop in Bonn, Germany, 23–24 September 2019. British Journal of Nutrition, 2021, 126, 942-949.	2.3	10
18	Characteristics of Settings and Etiologic Agents of Foodborne Disease Outbreaks â€" China, 2020. China CDC Weekly, 2021, 3, 889-893.	2.3	20

#	Article	IF	CITATIONS
19	Building country-level capacity to estimate the burden of COVID-19. European Journal of Public Health, 2021, 31, .	0.3	0
20	Unravelling data for rapid evidence-based response to COVID-19: the unCoVer project. European Journal of Public Health, 2021, 31, .	0.3	0
21	The Disease Burden of Dietary Exposure to Inorganic Arsenic in Denmark, 2018. Exposure and Health, 2020, 12, 751-759.	4.9	5
22	Burden of Disease Estimates of Seven Pathogens Commonly Transmitted Through Foods in Denmark, 2017. Foodborne Pathogens and Disease, 2020, 17, 322-339.	1.8	27
23	Surveillance of foodborne disease outbreaks in China, 2003–2017. Food Control, 2020, 118, 107359.	5.5	100
24	Population vulnerability to COVID-19 in Europe: a burden of disease analysis. Archives of Public Health, 2020, 78, 47.	2.4	45
25	Pathogenicity assessment of Shiga toxinâ€producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA Journal, 2020, 18, e05967.	1.8	111
26	Attributing Human Foodborne Diseases to Food Sources and Water in Japan Using Analysis of Outbreak Surveillance Data. Journal of Food Protection, 2020, 83, 2087-2094.	1.7	14
27	Food Safety Implications of Transitions Toward Sustainable Healthy Diets. Food and Nutrition Bulletin, 2020, 41, 104S-124S.	1.4	5
28	Unscattering the burden of disease landscape: supporting interaction between existing burden of disease efforts. European Journal of Public Health, 2020, 30, .	0.3	0
29	Risk Metrics. , 2020, , 47-78.		0
30	Building capacity in risk-benefit assessment of foods: Lessons learned from the RB4EU project. Trends in Food Science and Technology, 2019, 91, 541-548.	15.1	13
31	Global and regional source attribution of Shiga toxin-producing <i>Escherichia coli</i> infections using analysis of outbreak surveillance data. Epidemiology and Infection, 2019, 147, e236.	2.1	46
32	Associating sporadic, foodborne illness caused by Shiga toxin-producing <i>Escherichia coli</i> with specific foods: a systematic review and meta-analysis of case-control studies. Epidemiology and Infection, 2019, 147, e235.	2.1	32
33	Riskâ€Benefit Assessment of Foods. EFSA Journal, 2019, 17, e170917.	1.8	9
34	Seroprevalence of Toxoplasma gondii in domestic pigs, sheep, cattle, wild boars, and moose in the Nordic-Baltic region: A systematic review and meta-analysis. Parasite Epidemiology and Control, 2019, 5, e00100.	1.8	39
35	Exposure to Gestational Diabetes Is a Stronger Predictor of Dysmetabolic Traits in Children Than Size at Birth. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1766-1776.	3.6	12
36	A probabilistic approach for risk-benefit assessment of food substitutions: A case study on substituting meat by fish. Food and Chemical Toxicology, 2019, 126, 79-96.	3.6	18

#	Article	IF	Citations
37	Health impact of substituting red meat by fish: addressing variability in risk-benefit assessments. European Journal of Public Health, 2019, 29, .	0.3	1
38	RiskBenefit4EU – Partnering to strengthen Riskâ€Benefit Assessment within the EU using a holistic approach. EFSA Supporting Publications, 2019, 16, 1768E.	0.7	3
39	Burden of disease of heavy metals in population clusters: towards targeted public health strategies. European Journal of Public Health, 2019, 29, .	0.3	0
40	Estimating the burden of disease of exposure to chemical contaminants in food in Denmark. European Journal of Public Health, 2019, 29, .	0.3	0
41	Risk Benefit Assessment of foods: Key findings from an international workshop. Food Research International, 2019, 116, 859-869.	6.2	29
42	Being born small-for-gestational-age is associated with an unfavourable dietary intake in Danish adolescent girls: findings from the Danish National Birth Cohort. Journal of Developmental Origins of Health and Disease, 2019, 10, 488-496.	1.4	3
43	Climate change and the health impact of aflatoxins exposure in Portugal – an overview. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 1610-1621.	2.3	52
44	Use of Mathematical Optimization Models to Derive Healthy and Safe Fish Intake. Journal of Nutrition, 2018, 148, 275-284.	2.9	9
45	Meeting the challenges in the development of risk-benefit assessment of foods. Trends in Food Science and Technology, 2018, 76, 90-100.	15.1	36
46	Probabilistic approach for assessing cancer risk due to benzo[a]pyrene in barbecued meat: Informing advice for population groups. PLoS ONE, 2018, 13, e0207032.	2.5	6
47	Improving Burden of Disease and Source Attribution Estimates. , 2018, , 143-174.		2
48	Source Attribution and Risk Assessment of Antimicrobial Resistance., 2018,, 619-635.		1
49	Investigating the risk-benefit balance of substituting red and processed meat with fish in a Danish diet. Food and Chemical Toxicology, 2018, 120, 50-63.	3 . 6	32
50	Source Attribution and Risk Assessment of Antimicrobial Resistance. Microbiology Spectrum, 2018, 6, .	3.0	17
51	The disease burden of congenital toxoplasmosis in Denmark, 2014. PLoS ONE, 2017, 12, e0178282.	2.5	20
52	Research Synthesis Methods in an Age of Globalized Risks: Lessons from the Global Burden of Foodborne Disease Expert Elicitation. Risk Analysis, 2016, 36, 191-202.	2.7	3
53	Application of Molecular Typing Results in Source Attribution Models: The Case of Multiple Locus Variable Number Tandem Repeat Analysis (MLVA) of <i>Salmonella</i> Isolates Obtained from Integrated Surveillance in Denmark. Risk Analysis, 2016, 36, 571-588.	2.7	27
54	Burden of disease of dietary exposure to acrylamide in Denmark. Food and Chemical Toxicology, 2016, 90, 151-159.	3.6	31

#	Article	IF	Citations
55	Aetiology-Specific Estimates of the Global and Regional Incidence and Mortality of Diarrhoeal Diseases Commonly Transmitted through Food. PLoS ONE, 2015, 10, e0142927.	2.5	309
56	World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLoS Medicine, 2015, 12, e1001921.	8.4	937
57	Methodological Framework for World Health Organization Estimates of the Global Burden of Foodborne Disease. PLoS ONE, 2015, 10, e0142498.	2.5	89
58	Attributing foodborne salmonellosis in humans to animal reservoirs in the European Union using a multi-country stochastic model. Epidemiology and Infection, 2015, 143, 1175-1186.	2.1	105
59	Developments in food disease surveillance: using source attribution to inform risk management. , 2015, , 197-219.		0
60	Using surveillance and monitoring data of different origins in a <i>Salmonella</i> source attribution model: a European Union example with challenges and proposed solutions. Epidemiology and Infection, 2015, 143, 1148-1165.	2.1	17
61	World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Medicine, 2015, 12, e1001923.	8.4	1,250
62	Source Attribution of Human Salmonellosis: An Overview of Methods and Estimates. Foodborne Pathogens and Disease, 2014, 11, 667-676.	1.8	168
63	Assessing the Applicability of Currently Available Methods for Attributing Foodborne Disease to Sources, Including Food and Food Commodities. Foodborne Pathogens and Disease, 2013, 10, 206-213.	1.8	27
64	Source attribution of human salmonellosis using a meta-analysis of case-control studies of sporadic infections. Epidemiology and Infection, 2012, 140, 959-969.	2.1	49
65	Source attribution of human campylobacteriosis using a meta-analysis of case-control studies of sporadic infections. Epidemiology and Infection, 2012, 140, 970-981.	2.1	154
66	Development of a Salmonella sourceâ€attribution model for evaluating targets in the turkey meat production. EFSA Supporting Publications, 2012, 9, 259E.	0.7	13
67	Attributing human foodborne illness to food sources and water in Latin America and the Caribbean using data from outbreak investigations. International Journal of Food Microbiology, 2012, 152, 129-138.	4.7	102
68	Application of Bayesian Techniques to Model the Burden of Human Salmonellosis Attributable to U.S. Food Commodities at the Point of Processing: Adaptation of a Danish Model. Foodborne Pathogens and Disease, 2011, 8, 509-516.	1.8	101
69	Estimation of the relative contribution of different food and animal sources to human Salmonella infections in the European Union. EFSA Supporting Publications, 2011, 8, 184E.	0.7	47
70	Trends in slaughter pig production and antimicrobial consumption in Danish slaughter pig herds, 2002–2008. Epidemiology and Infection, 2011, 139, 1601-1609.	2.1	24
71	Source attribution of human <i>Salmonella</i> cases in Sweden. Epidemiology and Infection, 2011, 139, 1246-1253.	2.1	40
72	Scientific Opinion on Quantification of the risk posed by broiler meat to human campylobacteriosis in the EU. EFSA Journal, 2010, 8, 1437.	1.8	181

#	Article	IF	CITATIONS
73	Attribution of Human Listeria monocytogenes Infections in England and Wales to Ready-to-Eat Food Sources Placed on the Market: Adaptation of the Hald Salmonella Source Attribution Model. Foodborne Pathogens and Disease, 2010, 7, 749-756.	1.8	47
74	Assessing the Differences in Public Health Impact of <i>Salmonella</i> Subtypes Using a Bayesian Microbial Subtyping Approach for Source Attribution. Foodborne Pathogens and Disease, 2010, 7, 143-151.	1.8	56
75	Using Outbreak Data for Source Attribution of Human Salmonellosis and Campylobacteriosis in Europe. Foodborne Pathogens and Disease, 2010, 7, 1351-1361.	1.8	142
76	Attributing the Human Disease Burden of Foodborne Infections to Specific Sources. Foodborne Pathogens and Disease, 2009, 6, 417-424.	1.8	234
77	Comment on: Causal regulations vs. political will: Why human zoonotic infections increase despite precautionary bans on animal antibiotics. Environment International, 2009, 35, 760-761.	10.0	5
78	Toxoplasma gondii and the role of pork. , 0, , .		O