
Sara M Pires

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6104709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Medicine, 2015, 12, e1001923.	8.4	1,250
2	World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLoS Medicine, 2015, 12, e1001921.	8.4	937
3	Aetiology-Specific Estimates of the Global and Regional Incidence and Mortality of Diarrhoeal Diseases Commonly Transmitted through Food. PLoS ONE, 2015, 10, e0142927.	2.5	309
4	Attributing the Human Disease Burden of Foodborne Infections to Specific Sources. Foodborne Pathogens and Disease, 2009, 6, 417-424.	1.8	234
5	Scientific Opinion on Quantification of the risk posed by broiler meat to human campylobacteriosis in the EU. EFSA Journal, 2010, 8, 1437.	1.8	181
6	Source Attribution of Human Salmonellosis: An Overview of Methods and Estimates. Foodborne Pathogens and Disease, 2014, 11, 667-676.	1.8	168
7	Source attribution of human campylobacteriosis using a meta-analysis of case-control studies of sporadic infections. Epidemiology and Infection, 2012, 140, 970-981.	2.1	154
8	Using Outbreak Data for Source Attribution of Human Salmonellosis and Campylobacteriosis in Europe. Foodborne Pathogens and Disease, 2010, 7, 1351-1361.	1.8	142
9	Pathogenicity assessment of Shiga toxinâ€producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA Journal, 2020, 18, e05967.	1.8	111
10	Attributing foodborne salmonellosis in humans to animal reservoirs in the European Union using a multi-country stochastic model. Epidemiology and Infection, 2015, 143, 1175-1186.	2.1	105
11	Attributing human foodborne illness to food sources and water in Latin America and the Caribbean using data from outbreak investigations. International Journal of Food Microbiology, 2012, 152, 129-138.	4.7	102
12	Application of Bayesian Techniques to Model the Burden of Human Salmonellosis Attributable to U.S. Food Commodities at the Point of Processing: Adaptation of a Danish Model. Foodborne Pathogens and Disease, 2011, 8, 509-516.	1.8	101
13	Surveillance of foodborne disease outbreaks in China, 2003–2017. Food Control, 2020, 118, 107359.	5.5	100
14	Methodological Framework for World Health Organization Estimates of the Global Burden of Foodborne Disease. PLoS ONE, 2015, 10, e0142498.	2.5	89
15	Burden of foodborne diseases: think global, act local. Current Opinion in Food Science, 2021, 39, 152-159.	8.0	84
16	Assessing the Differences in Public Health Impact of <i>Salmonella</i> Subtypes Using a Bayesian Microbial Subtyping Approach for Source Attribution. Foodborne Pathogens and Disease, 2010, 7, 143-151.	1.8	56
17	Climate change and the health impact of aflatoxins exposure in Portugal – an overview. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 1610-1621.	2.3	52
18	Source attribution of human salmonellosis using a meta-analysis of case-control studies of sporadic infections. Epidemiology and Infection, 2012, 140, 959-969.	2.1	49

#	Article	IF	CITATIONS
19	Attribution of Human Listeria monocytogenes Infections in England and Wales to Ready-to-Eat Food Sources Placed on the Market: Adaptation of the Hald Salmonella Source Attribution Model. Foodborne Pathogens and Disease, 2010, 7, 749-756.	1.8	47
20	Estimation of the relative contribution of different food and animal sources to human Salmonella infections in the European Union. EFSA Supporting Publications, 2011, 8, 184E.	0.7	47
21	Burden of Disease Methods: A Guide to Calculate COVID-19 Disability-Adjusted Life Years. International Journal of Public Health, 2021, 66, 619011.	2.3	47
22	Global and regional source attribution of Shiga toxin-producing <i>Escherichia coli</i> infections using analysis of outbreak surveillance data. Epidemiology and Infection, 2019, 147, e236.	2.1	46
23	Population vulnerability to COVID-19 in Europe: a burden of disease analysis. Archives of Public Health, 2020, 78, 47.	2.4	45
24	Source attribution of human <i>Salmonella</i> cases in Sweden. Epidemiology and Infection, 2011, 139, 1246-1253.	2.1	40
25	Seroprevalence of Toxoplasma gondii in domestic pigs, sheep, cattle, wild boars, and moose in the Nordic-Baltic region: A systematic review and meta-analysis. Parasite Epidemiology and Control, 2019, 5, e00100.	1.8	39
26	Meeting the challenges in the development of risk-benefit assessment of foods. Trends in Food Science and Technology, 2018, 76, 90-100.	15.1	36
27	Mushroom Poisoning Outbreaks — China, 2010–2020. China CDC Weekly, 2021, 3, 518-522.	2.3	33
28	Investigating the risk-benefit balance of substituting red and processed meat with fish in a Danish diet. Food and Chemical Toxicology, 2018, 120, 50-63.	3.6	32
29	Associating sporadic, foodborne illness caused by Shiga toxin-producing <i>Escherichia coli</i> with specific foods: a systematic review and meta-analysis of case-control studies. Epidemiology and Infection, 2019, 147, e235.	2.1	32
30	Burden of disease of dietary exposure to acrylamide in Denmark. Food and Chemical Toxicology, 2016, 90, 151-159.	3.6	31
31	Risk Benefit Assessment of foods: Key findings from an international workshop. Food Research International, 2019, 116, 859-869.	6.2	29
32	Assessing the Applicability of Currently Available Methods for Attributing Foodborne Disease to Sources, Including Food and Food Commodities. Foodborne Pathogens and Disease, 2013, 10, 206-213.	1.8	27
33	Application of Molecular Typing Results in Source Attribution Models: The Case of Multiple Locus Variable Number Tandem Repeat Analysis (MLVA) of <i>Salmonella</i> Isolates Obtained from Integrated Surveillance in Denmark. Risk Analysis, 2016, 36, 571-588.	2.7	27
34	Burden of Disease Estimates of Seven Pathogens Commonly Transmitted Through Foods in Denmark, 2017. Foodborne Pathogens and Disease, 2020, 17, 322-339.	1.8	27
35	Trends in slaughter pig production and antimicrobial consumption in Danish slaughter pig herds, 2002–2008. Epidemiology and Infection, 2011, 139, 1601-1609.	2.1	24
36	Human health risk–benefit assessment of fish and other seafood: a scoping review. Critical Reviews in Food Science and Nutrition, 2022, 62, 7479-7502.	10.3	24

#	Article	IF	CITATIONS
37	The disease burden of congenital toxoplasmosis in Denmark, 2014. PLoS ONE, 2017, 12, e0178282.	2.5	20
38	Characteristics of Settings and Etiologic Agents of Foodborne Disease Outbreaks — China, 2020. China CDC Weekly, 2021, 3, 889-893.	2.3	20
39	A probabilistic approach for risk-benefit assessment of food substitutions: A case study on substituting meat by fish. Food and Chemical Toxicology, 2019, 126, 79-96.	3.6	18
40	Using surveillance and monitoring data of different origins in a <i>Salmonella</i> source attribution model: a European Union example with challenges and proposed solutions. Epidemiology and Infection, 2015, 143, 1148-1165.	2.1	17
41	Source Attribution and Risk Assessment of Antimicrobial Resistance. Microbiology Spectrum, 2018, 6, .	3.0	17
42	Risk–Benefit Assessment of Consumption of Rice for Adult Men in China. Frontiers in Nutrition, 2021, 8, 694370.	3.7	16
43	Mathematical modelling of Toxoplasma gondii transmission: A systematic review. Food and Waterborne Parasitology, 2021, 22, e00102.	2.7	14
44	Attributing Human Foodborne Diseases to Food Sources and Water in Japan Using Analysis of Outbreak Surveillance Data. Journal of Food Protection, 2020, 83, 2087-2094.	1.7	14
45	Development of a Salmonella sourceâ€attribution model for evaluating targets in the turkey meat production. EFSA Supporting Publications, 2012, 9, 259E.	0.7	13
46	Building capacity in risk-benefit assessment of foods: Lessons learned from the RB4EU project. Trends in Food Science and Technology, 2019, 91, 541-548.	15.1	13
47	Exposure to Gestational Diabetes Is a Stronger Predictor of Dysmetabolic Traits in Children Than Size at Birth. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1766-1776.	3.6	12
48	Integration of various dimensions in food-based dietary guidelines via mathematical approaches: report of a DGE/FENS Workshop in Bonn, Germany, 23–24 September 2019. British Journal of Nutrition, 2021, 126, 942-949.	2.3	10
49	Use of Mathematical Optimization Models to Derive Healthy and Safe Fish Intake. Journal of Nutrition, 2018, 148, 275-284.	2.9	9
50	Riskâ€Benefit Assessment of Foods. EFSA Journal, 2019, 17, e170917.	1.8	9
51	Non-typhoidal human salmonellosis in Rio Grande do Sul, Brazil: A combined source attribution study of microbial subtyping and outbreak data. International Journal of Food Microbiology, 2021, 338, 108992.	4.7	8
52	Probabilistic approach for assessing cancer risk due to benzo[a]pyrene in barbecued meat: Informing advice for population groups. PLoS ONE, 2018, 13, e0207032.	2.5	6
53	The burden of disease of three food-associated heavy metals in clusters in the Danish population – Towards targeted public health strategies. Food and Chemical Toxicology, 2021, 150, 112072.	3.6	6
54	Comment on: Causal regulations vs. political will: Why human zoonotic infections increase despite precautionary bans on animal antibiotics. Environment International, 2009, 35, 760-761.	10.0	5

#	Article	IF	CITATIONS
55	The Disease Burden of Dietary Exposure to Inorganic Arsenic in Denmark, 2018. Exposure and Health, 2020, 12, 751-759.	4.9	5
56	The increasing significance of disease severity in a burden of disease framework. Scandinavian Journal of Public Health, 2023, 51, 296-300.	2.3	5
57	Food Safety Implications of Transitions Toward Sustainable Healthy Diets. Food and Nutrition Bulletin, 2020, 41, 104S-124S.	1.4	5
58	Towards efficient use of data, models and tools in food microbiology. Current Opinion in Food Science, 2022, 46, 100834.	8.0	5
59	The disease burden of peanut allergy in Denmark measured by disabilityâ€adjusted life years (DALYs). Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1583-1585.	5.7	4
60	Burden of Disease of Dietary Exposure to Four Chemical Contaminants in Denmark, 2019. Exposure and Health, 2022, 14, 871-883.	4.9	4
61	Research Synthesis Methods in an Age of Globalized Risks: Lessons from the Global Burden of Foodborne Disease Expert Elicitation. Risk Analysis, 2016, 36, 191-202.	2.7	3
62	RiskBenefit4EU – Partnering to strengthen Riskâ€Benefit Assessment within the EU using a holistic approach. EFSA Supporting Publications, 2019, 16, 1768E.	0.7	3
63	Being born small-for-gestational-age is associated with an unfavourable dietary intake in Danish adolescent girls: findings from the Danish National Birth Cohort. Journal of Developmental Origins of Health and Disease, 2019, 10, 488-496.	1.4	3
64	Estimates of global disease burden associated with foodborne pathogens. , 2021, , 3-17.		3
65	Risk-Benefit Assessment of Cereal-Based Foods Consumed by Portuguese Children Aged 6 to 36 Months—A Case Study under the RiskBenefit4EU Project. Nutrients, 2021, 13, 3127.	4.1	3
66	Novel foods as red meat replacers – an insight using Risk Benefit Assessment methods (the NovRBA) Tj ETQq	0 0 8 rgBT	Öyerlock 10
67	Improving Burden of Disease and Source Attribution Estimates. , 2018, , 143-174.		2
68	Prevalence of Antimicrobial Resistant of <i>Vibrio parahaemolyticus</i> Isolated from Diarrheal Patients — Six PLADs, China, 2016â^'2020. China CDC Weekly, 2021, 3, 615-619.	2.3	2
69	Source Attribution and Risk Assessment of Antimicrobial Resistance. , 2018, , 619-635.		1
70	Health impact of substituting red meat by fish: addressing variability in risk-benefit assessments. European Journal of Public Health, 2019, 29, .	0.3	1
71	Developments in food disease surveillance: using source attribution to inform risk management. , 2015, , 197-219.		0
72	Burden of disease of heavy metals in population clusters: towards targeted public health strategies. European Journal of Public Health, 2019, 29, .	0.3	0

#	Article	IF	CITATIONS
73	Estimating the burden of disease of exposure to chemical contaminants in food in Denmark. European Journal of Public Health, 2019, 29, .	0.3	0
74	Building country-level capacity to estimate the burden of COVID-19. European Journal of Public Health, 2021, 31, .	0.3	0
75	Toxoplasma gondii and the role of pork. , 0, , .		0
76	Unravelling data for rapid evidence-based response to COVID-19: the unCoVer project. European Journal of Public Health, 2021, 31, .	0.3	0
77	Unscattering the burden of disease landscape: supporting interaction between existing burden of disease efforts. European Journal of Public Health, 2020, 30, .	0.3	0
78	Risk Metrics. , 2020, , 47-78.		0