
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6104705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Composites Science and Technology, 2009, 69, 335-342.	3.8	317
2	Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Composites Part B: Engineering, 2008, 39, 209-216.	5.9	296
3	Bimetallic copper cobalt selenide nanowire-anchored woven carbon fiber-based structural supercapacitors. Chemical Engineering Journal, 2019, 355, 551-559.	6.6	117
4	Woven Kevlar Fiber/Polydimethylsiloxane/Reduced Graphene Oxide Composite-Based Personal Thermal Management with Freestanding Cu–Ni Core–Shell Nanowires. Nano Letters, 2018, 18, 6731-6739.	4.5	104
5	Multifunctional CuO nanowire embodied structural supercapacitor based on woven carbon fiber/ionic liquid–polyester resin. Composites Part A: Applied Science and Manufacturing, 2016, 87, 256-262.	3.8	95
6	Tunable Multimodal Drop Bouncing Dynamics and Anti-Icing Performance of a Magnetically Responsive Hair Array. ACS Nano, 2018, 12, 10693-10702.	7.3	86
7	Influence of a micropatterned insert on characteristics of the tool–workpiece interface in a hard turning process. Journal of Materials Processing Technology, 2016, 229, 160-171.	3.1	83
8	Finite element modeling of hard turning process via a micro-textured tool. International Journal of Advanced Manufacturing Technology, 2015, 78, 1393-1405.	1.5	81
9	Biomechanical Energyâ€Harvesting Wearable Textileâ€Based Personal Thermal Management Device Containing Epitaxially Grown Aligned Agâ€Tippedâ€Ni <i>_x</i> Co _{1â^'} <i>_x</i> Se Nanowires/Reduced Graphene Oxide, Advanced Functional Materials, 2019, 29, 1903144.	7.8	80
10	Recent development and challenges of multifunctional structural supercapacitors for automotive industries. International Journal of Energy Research, 2017, 41, 1397-1411.	2.2	79
11	Force modeling of micro-grinding incorporating crystallographic effects. International Journal of Machine Tools and Manufacture, 2008, 48, 1658-1667.	6.2	73
12	Multifunctional enhancement of woven carbon fiber/ZnO nanotube-based structural supercapacitor and polyester resin-domain solid-polymer electrolytes. Chemical Engineering Journal, 2017, 325, 672-680.	6.6	66
13	Triboelectric-nanogenerator-integrated structural supercapacitor based on highly active P-doped branched Cu–Mn selenide nanowires for efficient energy harvesting and storage. Nano Energy, 2020, 73, 104754.	8.2	63
14	Processing and mechanical characterization of ZnO/polyester woven carbon–fiber composites with different ZnO concentrations. Composites Part A: Applied Science and Manufacturing, 2013, 55, 152-160.	3.8	62
15	Characterization of resistive heating and thermoelectric behavior of discontinuous carbon fiber-epoxy composites. Composites Part B: Engineering, 2016, 90, 37-44.	5.9	62
16	Enhancement in mechanical properties of polyamide 66-carbon fiber composites containing graphene oxide-carbon nanotube hybrid nanofillers synthesized through in situ interfacial polymerization. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105938.	3.8	58
17	Electromagnetic interference shielding of composites consisting of a polyester matrix and carbon nanotube-coated fiber reinforcement. Composites Part A: Applied Science and Manufacturing, 2013, 50, 73-80.	3.8	53
18	Pd/Cu-Oxide Nanoconjugate at Zeolite-Y Crystallite Crafting the Mesoporous Channels for Selective Oxidation of Benzyl-Alcohols. ACS Applied Materials & Interfaces, 2017, 9, 35453-35462.	4.0	51

#	Article	IF	CITATIONS
19	Hybrid Architectures of Heterogeneous Carbon Nanotube Composite Microstructures Enable Multiaxial Strain Perception with High Sensitivity and Ultrabroad Sensing Range. Small, 2018, 14, e1803411.	5.2	51
20	Growth of aligned ZnO nanorods on woven Kevlar® fiber and its performance in woven Kevlar® fiber/polyester composites. Composites Part A: Applied Science and Manufacturing, 2015, 78, 284-293.	3.8	50
21	Controlled growth of CuO nanowires on woven carbon fibers and effects on the mechanical properties of woven carbon fiber/polyester composites. Composites Part A: Applied Science and Manufacturing, 2015, 69, 56-63.	3.8	50
22	Piezoresistive behavior and multi-directional strain sensing ability of carbon nanotube–graphene nanoplatelet hybrid sheets. Smart Materials and Structures, 2013, 22, 015013.	1.8	48
23	Optimal synthesis and characterization of Ag nanofluids by electrical explosion of wires in liquids. Nanoscale Research Letters, 2011, 6, 223.	3.1	46
24	Large Pulsed Electron Beam Welded Percolation Networks of Silver Nanowires for Transparent and Flexible Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 20938-20945.	4.0	46
25	Electromechanical strain sensing using polycarbonate-impregnated carbon nanotube–graphene nanoplatelet hybrid composite sheets. Composites Science and Technology, 2013, 89, 1-9.	3.8	45
26	Effects of process parameters and surface treatments of graphene nanoplatelets on the crystallinity and thermomechanical properties of polyamide 6 composite fibers. Composites Part B: Engineering, 2016, 100, 220-227.	5.9	40
27	Experimental study on critical heat flux of highly efficient soft hydrophilic CuO–chitosan nanofluid templates. International Journal of Heat and Mass Transfer, 2016, 100, 396-406.	2.5	39
28	Influence of a large pulsed electron beam (LPEB) on the corrosion resistance of Tiâ^'6Alâ^'7Nb alloys. Corrosion Science, 2015, 90, 153-160.	3.0	38
29	Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene. Scientific Reports, 2017, 7, 40386.	1.6	38
30	Ultra-high-speed processing of nanomaterial-reinforced woven carbon fiber/polyamide 6 composites using reactive thermoplastic resin transfer molding. Composites Part B: Engineering, 2018, 143, 36-46.	5.9	38
31	Microwave absorption and mechanical performance of α-MnO2 nanostructures grown on woven Kevlar fiber/reduced graphene oxide-polyaniline nanofiber array-reinforced polyester resin composites. Composites Part B: Engineering, 2018, 140, 123-132.	5.9	38
32	The state of the art in the electron beam manufacturing processes. International Journal of Precision Engineering and Manufacturing, 2016, 17, 1575-1585.	1.1	37
33	Characterization of thermoelectric properties of multifunctional multiscale composites and fiber-reinforced composites for thermal energy harvesting. Composites Part B: Engineering, 2016, 92, 202-209.	5.9	37
34	Fabrication and Synthesis of Highly Ordered Nickel Cobalt Sulfide Nanowire-Grown Woven Kevlar Fiber/Reduced Graphene Oxide/Polyester Composites. ACS Applied Materials & Interfaces, 2017, 9, 36311-36319.	4.0	37
35	Current research trends in external energy assisted machining. International Journal of Precision Engineering and Manufacturing, 2013, 14, 337-342.	1.1	36
36	Synergistic interfacial reinforcement of carbon fiber/polyamide 6 composites using carbon-nanotube-modified silane coating on ZnO-nanorod-grown carbon fiber. Composites Science and Technology, 2018, 165, 362-372.	3.8	35

#	Article	IF	CITATIONS
37	Force modeling of microscale grinding process incorporating thermal effects. International Journal of Advanced Manufacturing Technology, 2009, 44, 476-486.	1.5	34
38	Tool life improvement in cryogenic cooled milling of the preheated Ti–6Al–4V. International Journal of Advanced Manufacturing Technology, 2015, 79, 665-673.	1.5	34
39	Design and dynamic analysis of an arch-type desktop reconfigurable machine. International Journal of Machine Tools and Manufacture, 2010, 50, 575-584.	6.2	33
40	Electrochemical performance evaluation of tin oxide nanorod-embedded woven carbon fiber composite supercapacitor. International Journal of Energy Research, 2018, 42, 490-498.	2.2	33
41	Improved corrosion resistance of Mg alloy AZ31B induced by selective evaporation of Mg using large pulsed electron beam irradiation. Journal of Materials Science and Technology, 2019, 35, 891-901.	5.6	33
42	Interlaminar resistive heating behavior of woven carbon fiber composite laminates modified with ZnO nanorods. Composites Science and Technology, 2014, 100, 83-91.	3.8	32
43	Highly wettable CuO:graphene oxide core-shell porous nanocomposites for enhanced critical heat flux. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1756-1766.	0.8	31
44	Microwave-induced hierarchical iron-carbon nanotubes nanostructures anchored on polypyrrole/graphene oxide-grafted woven Kevlar® fiber. Composites Science and Technology, 2016, 129, 137-145.	3.8	31
45	Magneto-responsive photothermal composite cilia for active anti-icing and de-icing. Composites Science and Technology, 2022, 217, 109086.	3.8	31
46	Triboelectric nanogenerator-integrated structural supercapacitor with in situ MXene-dispersed N-doped Zn–Cu selenide nanostructured woven carbon fiber for energy harvesting and storage. Energy Storage Materials, 2021, 43, 402-410.	9.5	30
47	Finite Element Modeling of Three-Dimensional Milling Process of Ti–6Al–4V. Materials and Manufacturing Processes, 2014, 29, 564-571.	2.7	29
48	Prediction of thermal conductivities of carbon-containing fiber-reinforced and multiscale hybrid composites. Composites Part B: Engineering, 2018, 133, 232-239.	5.9	28
49	Lowâ€Resistant Electrical and Robust Mechanical Contacts of Selfâ€Attachable Flexible Transparent Electrodes with Patternable Circuits. Advanced Functional Materials, 2020, 30, 2000458.	7.8	28
50	Surface modification of the metal plates using continuous electron beam process (CEBP). Applied Surface Science, 2014, 311, 201-207.	3.1	27
51	Evaluation of Tool Life in the Dry Machining of Inconel 718 Parts from Additive Manufacturing (AM). International Journal of Precision Engineering and Manufacturing, 2020, 21, 57-65.	1.1	27
52	Electrical thermal heating and piezoresistive characteristics of hybrid CuO–woven carbon fiber/vinyl ester composite laminates. Composites Part A: Applied Science and Manufacturing, 2016, 85, 103-112.	3.8	26
53	Development of a micro/meso-tool clamp using a shape memory alloy for applications in micro-spindle units. International Journal of Machine Tools and Manufacture, 2009, 49, 579-585.	6.2	24
54	Multi-procedure design optimization and analysis of mesoscale machine tools. International Journal of Advanced Manufacturing Technology, 2011, 56, 1-12.	1.5	24

#	Article	IF	CITATIONS
55	Corrosion inhibition and surface hardening of KP1 and KP4 mold steels using pulsed electron beam treatment. Corrosion Science, 2014, 89, 179-188.	3.0	24
56	Interfacial resistive heating and mechanical properties of graphene oxide assisted CuO nanoparticles in woven carbon fiber/polyester composite. Composites Part A: Applied Science and Manufacturing, 2016, 80, 159-170.	3.8	24
57	Deformation and interlaminar crack propagation sensing in carbon fiber composites using electrical resistance measurement. Composite Structures, 2019, 216, 142-150.	3.1	24
58	Fractal to monolayer growth of AgCl and Ag/AgCl nanoparticles on vanadium oxides (VO _x) for visible-light photocatalysis. Journal of Materials Chemistry A, 2017, 5, 16953-16963.	5.2	23
59	Electromagnetic interference shielding behavior of hybrid carbon nanotube/exfoliated graphite nanoplatelet coated glass fiber composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 248, 114403.	1.7	23
60	Recent Developments and Challenges on Machining of Carbon Fiber Reinforced Polymer Composite Laminates. International Journal of Precision Engineering and Manufacturing, 2021, 22, 2027-2044.	1.1	22
61	High performance corrosion and wear resistant Ti-6Al-4V alloy by the hybrid treatment method. Applied Surface Science, 2020, 504, 144388.	3.1	21
62	In situ process monitoring of hierarchical micro-/nano-composites using percolated carbon nanotube networks. Composites Part A: Applied Science and Manufacturing, 2016, 84, 281-291.	3.8	20
63	Adhesion of bioinspired nanocomposite microstructure at high temperatures. Applied Surface Science, 2017, 413, 275-283.	3.1	20
64	Large pulsed electron beam (LPEB)-processed woven carbon fiber/ZnO nanorod/polyester resin composites. Composites Science and Technology, 2014, 102, 106-112.	3.8	19
65	Mechanical properties and corrosion behavior of the nitriding surface layer of Ti 6Al 7Nb using large pulsed electron beam (LPEB). Journal of Alloys and Compounds, 2016, 679, 138-148.	2.8	19
66	Predictive cutting force model for a cryogenic machining process incorporating the phase transformation of Ti-6Al-4V. International Journal of Advanced Manufacturing Technology, 2018, 96, 1293-1304.	1.5	19
67	Potentials of additive manufacturing with smart materials for chemical biomarkers in wearable applications. International Journal of Precision Engineering and Manufacturing - Green Technology, 2017, 4, 335-347.	2.7	18
68	Microstructure and corrosion resistance of a Mg2Sn-dispersed Mg alloy subjected to pulsed electron beam treatment. Journal of Magnesium and Alloys, 2020, 8, 345-351.	5.5	18
69	Porous spongy FexCo1â^xP nanostructure and MXene infused self-powered flexible textile based personal thermoregulatory device. Nano Energy, 2021, 86, 106042.	8.2	18
70	Pt Nanoparticle-Decorated Reduced Graphene Oxide Hydrogel for High-Performance Strain Sensor: Tailoring Piezoresistive Property by Controlled Microstructure of Hydrogel. ACS Applied Nano Materials, 2018, 1, 2836-2843.	2.4	17
71	Fabrication of durable hydrophobic micropatterns on stainless steel using a hybrid irradiation process. Surface and Coatings Technology, 2016, 302, 535-542.	2.2	16
72	Fabrication of the piezoresistive sensor using the continuous laser-induced nanostructure growth for structural health monitoring. Carbon, 2019, 152, 376-387.	5.4	16

#	Article	IF	CITATIONS
73	Multifunctional composite as a structural supercapacitor and self-sensing sensor using NiCo2O4 nanowires and ionic liquid. Composites Science and Technology, 2021, 213, 108833.	3.8	16
74	Multidimensional wearable self-powered personal thermal management with scalable solar heating and a triboelectric nanogenerator. Nano Energy, 2022, 98, 107323.	8.2	16
75	Microgrinding force predictive modelling based on microscale single grain interaction analysis. International Journal of Manufacturing Technology and Management, 2007, 12, 25.	0.1	15
76	Smart gating of the flexible Ag@CoxMo1-xP and rGO-loaded composite based personal thermal management device inspired by the neuroanatomic circuitry of endotherms. Chemical Engineering Journal, 2021, 421, 127746.	6.6	15
77	Surface modification of the patterned Al6061/SUS304 metal plates using the large electron beam. Applied Surface Science, 2012, 261, 458-463.	3.1	14
78	Critical heat flux characteristics of nanofluids based on exfoliated graphite nanoplatelets (xGnPs). Materials Letters, 2012, 81, 193-197.	1.3	14
79	Modeling, processing, and characterization of exfoliated graphite nanoplatelet-nylon 6 composite fibers. Composites Part B: Engineering, 2014, 66, 511-517.	5.9	14
80	Poly(vinyl alcohol)/silica nanoparticles based anion-conducting nanocomposite membrane for fuel-cell applications. Macromolecular Research, 2015, 23, 256-264.	1.0	14
81	Performance Evaluation of a Miniaturized Machining Center for Precision Manufacturing. , 2004, , 503.		13
82	Effect of CuO nanostructure morphology on the mechanical properties of CuO/woven carbon fiber/vinyl ester composites. Composites Part A: Applied Science and Manufacturing, 2015, 78, 48-59.	3.8	13
83	Temperature predictive model of the large pulsed electron beam (LPEB) irradiation on engineering alloys. Applied Thermal Engineering, 2018, 128, 151-158.	3.0	13
84	Experimental and analytical investigation of the drilling forces of the carbon fiber reinforced plastics including thermal effects. Journal of Manufacturing Processes, 2020, 58, 1126-1137.	2.8	13
85	Enhancement of the surface properties of selective laser melted maraging steel by large pulsed electron-beam irradiation. Additive Manufacturing, 2020, 33, 101125.	1.7	13
86	Transparent graphene films with a tunable piezoresistive response. Journal of Materials Chemistry C, 2013, 1, 7208.	2.7	12
87	Synthesis of hierarchical copper oxide composites prepared via electrical explosion of the wire in liquids method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 710-717.	2.3	12
88	Interfacial control through ZnO nanorod growth on plasma-treated carbon fiber for multiscale reinforcement of carbon fiber/polyamide 6 composites. Materials Today Communications, 2018, 17, 438-449.	0.9	12
89	Numerical and experimental investigation of the delamination in drilling of the carbon fiber-reinforced plastic composite. International Journal of Advanced Manufacturing Technology, 2021, 112, 2373-2387.	1.5	12
90	Novel structural health monitoring method for CFRPs using electrical resistance based probabilistic sensing cloud. Composites Science and Technology, 2021, 213, 108812.	3.8	12

#	Article	IF	CITATIONS
91	Deburring drilled holes in CFRP composites with large pulsed electron beam (LPEB) irradiation. Journal of Manufacturing Processes, 2019, 40, 68-75.	2.8	11
92	Tool wear, economic costs, and CO2 emissions analysis in cryogenic assisted hard-turning process of AISI 52100 steel. Sustainable Materials and Technologies, 2021, 30, e00349.	1.7	11
93	Shear-pressure multimodal sensor based on flexible cylindrical pillar array and flat structured carbon nanocomposites with simple fabrication process. Composites Science and Technology, 2019, 184, 107841.	3.8	10
94	Advanced non-destructive evaluation of impact damage growth in carbon-fiber-reinforced plastic by electromechanical analysis and machine learning clustering. Composites Science and Technology, 2022, 218, 109094.	3.8	10
95	Hybrid deburring process assisted by a large pulsed electron beam (LPEB) for laser-fabricated patterned metal masks. Applied Surface Science, 2015, 357, 1676-1683.	3.1	9
96	Enhanced mechanical and thermal properties of hybrid SnO 2 –woven carbon fiber composites using the facile controlled growth method. Composites Science and Technology, 2016, 133, 60-69.	3.8	9
97	Dynamically actuating nanospike composites as a bioinspired antibiofilm material. Composites Science and Technology, 2022, 220, 109267.	3.8	9
98	Large pulsed electron beam surface treatment of translucent PMMA. Applied Surface Science, 2014, 308, 311-315.	3.1	8
99	Unidirectional spreadâ€ŧow carbon fiber/polypropylene composites reinforced with mechanically aligned multiâ€walled carbon nanotubes and exfoliated graphite nanoplatelets. Polymer Composites, 2018, 39, E1251.	2.3	7
100	Hierarchically structured ZnO nanorod-carbon fiber composites as ultrathin, flexible, highly sensitive triboelectric sensors. Smart Materials and Structures, 2020, 29, 025002.	1.8	7
101	Interfacial enhancements between a three-dimensionally printed Honeycomb-Truss core and woven carbon fiber/polyamide-6 facesheets in sandwich-structured composites. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106534.	3.8	7
102	Fabrication and synthesis of solvent-free aluminum oxide colloids by electrical explosion of wires in liquids method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459, 100-108.	2.3	6
103	From macro to micro, evolution of surface structures on cutting tools: a review. JMST Advances, 2019, 1, 89-106.	0.6	6
104	Reducing the pitting susceptibility of AISI 304 stainless steel using a hybrid treatment of high-power diode laser and large pulsed electron beam irradiation. Surface and Coatings Technology, 2020, 381, 125124.	2.2	6
105	Self-sensing impact damage in and non-destructive evaluation of carbon fiber-reinforced polymers using electrical resistance and the corresponding electrical route models. Sensors and Actuators A: Physical, 2021, 332, 112762.	2.0	6
106	Waterproof and Wear-Resistant Surface Treatment on Printed Parts of Polyamide 12 (PA12) by Selective Laser Sintering Using a Large Pulsed Electron Beam. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 71-83.	2.7	6
107	Predictive modeling for the cryogenic cooling condition of the hard turning process. International Journal of Advanced Manufacturing Technology, 2018, 99, 2877-2891.	1.5	5
108	Numerical and experimental study of end-milling process of titanium alloy with a cryogenic internal coolant supply. International Journal of Advanced Manufacturing Technology, 2019, 105, 2957-2975.	1.5	5

#	Article	IF	CITATIONS
109	Replacement of Hazard Lubricants by Green Coolant in Machining of Ti6Al4V: A 3D FEM Approach. International Journal of Precision Engineering and Manufacturing, 2019, 20, 1027-1035.	1.1	5
110	Design, Manufacturing, and Characterization of High-Performance Lightweight Bipolar Plates Based on Carbon Nanotube-Exfoliated Graphite Nanoplatelet Hybrid Nanocomposites. Journal of Nanomaterials, 2012, 2012, 1-8.	1.5	4
111	Non-contact measurement methods for micro- and meso-scale tool positioning. International Journal of Advanced Manufacturing Technology, 2012, 60, 251-260.	1.5	4
112	Experimental observation of the critical heat flux (CHF) enhancement of the nanofluids by the electrical explosion of a wire in liquid. International Journal of Heat and Mass Transfer, 2014, 79, 868-875.	2.5	4
113	Experimental Investigation on Tool Wear During the Milling Processes for the Post-Processing of Selective Laser Melted Inconel 718 Alloys. , 2018, , .		4
114	Synergistic Mechanical Reinforcement of Woven Carbon Fiber/Polypropylene Composites Using Plasma Treatment and Nanoclay. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 595-609.	2.7	4
115	Precision Machining with Micro-Scale Vertical Machining Center. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2006, 10, 187-195.	0.5	4
116	Thermal and mechanical properties of modified CaCO3 filled poly (ethylene terephthalate) nanocomposites. Fibers and Polymers, 2014, 15, 1493-1499.	1.1	3
117	Fabrication and synthesis of uniform TiO2 nanoporous and nanotubular structures on dual-phase Ti–6Al–4V alloy using electron-beam irradiation. Materials Chemistry and Physics, 2020, 242, 122549.	2.0	3
118	Fabrication and Characterization of Carbon Nanotube/Carbon Fiber/Polycarbonate Multiscale Hybrid Composites. Composites Research, 2016, 29, 269-275.	0.1	3
119	Predictive modeling of microhole profile drilled using a focused electron beam with backing materials. International Journal of Thermal Sciences, 2022, 177, 107584.	2.6	3
120	Carbon fiber grid sensor for structural deformation using piezoresistive behavior of carbon fiber. Sensors and Actuators A: Physical, 2022, 341, 113348.	2.0	3
121	Surface modifications to grooved SM45C mold steel plates using large-electron-beam polishing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226, 950-954.	1.5	2
122	FE Simulation of Cryogenic Assisted Machining of Ti Alloy (Ti6Al4V). , 2015, , .		2
123	Prediction enhancement of the J-lead interconnection reliability of land grid array sockets. Journal of Mechanical Science and Technology, 2015, 29, 2187-2193.	0.7	2
124	Deep-Sintered Copper Tracks for Thermal Oxidation Resistance Using Large Pulsed Electron Beam. ACS Omega, 2021, 6, 19134-19143.	1.6	2
125	Computational Modeling of the Bearing Coupling Section of Machine Tools. Journal of the Korean Society for Precision Engineering, 2012, 29, 1050-1055.	0.1	2
126	Study on Characteristics of Cryogenic Machining Process of Titanium Alloy at a Low Cutting Speed. Journal of the Korean Society for Precision Engineering, 2017, 34, 237-241.	0.1	2

#	Article	IF	CITATIONS
127	MODELING OF SERRATED CHIP FORMATION IN HIGH SPEED ORTHOGONAL MACHINING. International Journal of Modern Physics B, 2008, 22, 1666-1671.	1.0	1
128	Characterising the topography of a micro-grinding wheel. International Journal of Manufacturing Research, 2009, 4, 1.	0.1	1
129	Study of an Identification Method of the Mesoscale Tool Position. Key Engineering Materials, 2010, 450, 271-274.	0.4	1
130	Experimental Observation for Surface Modification of Metal Plates Using Continuous Electron Beam Polishing (CEBP). , 2014, , .		1
131	Simulation of the round insert face milling process of AISI 316LN stainless steel with machining-based plastic behavior modeling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 235, 443-454.	1.5	1
132	The State of the Art in FEM Analysis Technology of the Machining Process. Journal of the Korean Society for Precision Engineering, 2018, 35, 269-278.	0.1	1
133	Surface Finishing Post-treatments for Additive Manufactured Metallic Components. Springer Tracts in Additive Manufacturing, 2022, , 161-188.	0.2	1
134	Analysis of the Scale Effect for Microscale Machine Tools. , 2007, , .		0
135	CHF Enhancement of Pool Boiling in Graphene Oxide Nanofluid With Chemical Reduction. , 2013, , .		0
136	Synthesis and Characterization of Non-Toxic Thermal Stabilizers of PVC Based on Layered Double Hydroxides. Asian Journal of Chemistry, 2014, 26, 5797-5799.	0.1	0
137	Special issue on environmentally conscious technologies in mechanical engineering. Advances in Mechanical Engineering, 2015, 7, 168781401558542.	0.8	0
138	Electronic Skins: Hybrid Architectures of Heterogeneous Carbon Nanotube Composite Microstructures Enable Multiaxial Strain Perception with High Sensitivity and Ultrabroad Sensing Range (Small 52/2018). Small, 2018, 14, 1870253.	5.2	0
139	Optimal Dimensioning of Miniaturized Machine Tools. , 2006, , .		0
140	Development of a Multiscale Machining Compound Mesoscale Machine Tool (MMT) Platform. Advanced Science Letters, 2012, 13, 152-157.	0.2	0
141	Optimization of the Hard Turning Process of the Harden Bearing Steel Using Response Surface Methodology. Journal of the Korean Society for Precision Engineering, 2017, 34, 683-687.	0.1	Ο