
Johann StĶtter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6104637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Can Education Save Money, Energy, and the Climate?— Assessing the Potential Impacts of Climate Change Education on Energy Literacy and Energy Consumption in the Light of the EU Energy Efficiency Directive and the Austrian Energy Efficiency Act. Energies, 2022, 15, 1118.	3.1	16
2	Rethinking Quality Science Education for Climate Action: Transdisciplinary Education for Transformative Learning and Engagement. Frontiers in Education, 2022, 7, .	2.1	4
3	Den 17 <i>Nachhaltigen Entwicklungszielen</i> den Weg bereiten: <i>UniNEtZ:</i> der Weg von der Theorie in die Praxis. Gaia, 2021, 30, 54-56.	0.7	1
4	High mountain rockfall dynamics: rockfall activity and runout assessment under the aspect of a changing cryosphere. Geografiska Annaler, Series A: Physical Geography, 2021, 103, 83-102.	1.5	6
5	From Transdisciplinary Research to Transdisciplinary Education—The Role of Schools in Contributing to Community Well-Being and Sustainable Development. Sustainability, 2021, 13, 306.	3.2	15
6	Modelling of Vegetation Dynamics from Satellite Time Series to Determine Proglacial Primary Succession in the Course of Global Warming—A Case Study in the Upper Martell Valley (Eastern Italian) Tj ETQq0)40@rgBT	/Onverlock 1
7	Why Do We Harm the Environment or Our Personal Health despite Better Knowledge? The Knowledge Action Gap in Healthy and Climate-Friendly Behavior. Sustainability, 2021, 13, 13361.	3.2	4
8	Von <i>UniNEtZ</i> zu <i>UniNEtZ II</i> ―eine Reflexion zu Erreichtem und ein Ausblick zu Angestrebtem. Gaia, 2021, 30, 278-280.	0.7	0
9	Strengthening their climate change literacy: A case study addressing the weaknesses in young people's climate change awareness. Applied Environmental Education and Communication, 2020, 19, 375-388.	1.1	22
10	Bridging the Action Gap by Democratizing Climate Change Education—The Case of k.i.d.Z.21 in the Context of Fridays for Future. Sustainability, 2020, 12, 1748.	3.2	23
11	Perennial snow patch detection based on remote sensing data on Tröllaskagi Peninsula, northern Iceland. Jokull, 2020, 69, 103-128.	0.1	2
12	Changing Climate Change Education: Exploring moderate constructivist and transdisciplinary approaches through the research-education co-operation <i>k.i.d.Z.21</i> . Gaia, 2019, 28, 35-43.	0.7	21
13	A Probabilistic Framework for Risk Analysis of Widespread Flood Events: A Proofâ€ofâ€Concept Study. Risk Analysis, 2019, 39, 125-139.	2.7	9
14	Österreichische Universitäen übernehmen Verantwortung: Das Projekt Universitäen und Nachhaltige EntwicklungsZiele (UniNEtZ). Gaia, 2019, 28, 163-165.	0.7	6
15	It's a Hit! Mapping Austrian Research Contributions to the Sustainable Development Goals. Sustainability, 2018, 10, 3295.	3.2	52
16	The European mountain cryosphere: aÂreview of its current state, trends, and future challenges. Cryosphere, 2018, 12, 759-794.	3.9	382
17	Geodetic reanalysis of annual glaciological mass balances (2001–2011) of Hintereisferner, Austria. Cryosphere, 2018, 12, 833-849.	3.9	44
18	The Rofental: a high Alpine research basin (1890–3770 m a.s.l.) in the Ötztal Alps (Austria) with over 150 years of hydrometeorological and glaciological observations. Earth System Science Data, 2018, 10, 151-171.	9.9	32

Johann Stã¶tter

#	Article	IF	CITATIONS
19	<i>Kompetent in die Zukunft</i> : Die Forschungs-Bildungs-Kooperation zur Klimawandelbildung <i>k.i.d.Z.21</i> und <i>k.i.d.Z.21-Austria</i> . Gaia, 2016, 25, 214-216.	0.7	6
20	Progressive formation of modern drumlins at Múlajökull, Iceland: stratigraphical and morphological evidence. Boreas, 2016, 45, 567-583.	2.4	31
21	Assessing potential climate change impacts on the seasonality of runoff in an Alpine watershed. Journal of Water and Climate Change, 2015, 6, 263-277.	2.9	13
22	A Rock Glacier Activity Index Based on Rock Glacier Thickness Changes and Displacement Rates Derived From Airborne Laser Scanning. Permafrost and Periglacial Processes, 2015, 26, 347-359.	3.4	16
23	Scenarios of Future Snow Conditions in Styria (Austrian Alps). Journal of Hydrometeorology, 2015, 16, 261-277.	1.9	41
24	Internal communication a prerequisite for risk governance: hazard zone planning in South Tyrol, Italy. Environmental Hazards, 2015, 14, 87-102.	2.5	4
25	Data infrastructure for multitemporal airborne LiDAR point cloud analysis – Examples from physical geography in high mountain environments. Computers, Environment and Urban Systems, 2014, 45, 137-146.	7.1	38
26	Climate Change Impact Assessment of Ski Tourism in Tyrol. Tourism Geographies, 2013, 15, 577-600.	4.0	60
27	Risk-based damage potential and loss estimation of earthquake scenarios in the moderate endangered Austrian Federal Province of Tyrol. Georisk, 2012, 6, 105-127.	3.5	1
28	Assessment of climate change impacts on flood hazard potential in the Alpine Lech watershed. Journal of Hydrology, 2012, 460-461, 29-39.	5.4	49
29	Simulation of debris flows in the Central Andes based on Open Source GIS: possibilities, limitations, and parameter sensitivity. Natural Hazards, 2012, 61, 1051-1081.	3.4	41
30	Quantification of geomorphodynamics in glaciated and recently deglaciated terrain based on airborne laser scanning data. Geografiska Annaler, Series A: Physical Geography, 2012, 94, 17-32.	1.5	29
31	Reliefparameter und abflusssteuernde FlĤheneigenschaften: Statistische Analyse ihres Zusammenhangs in einem kleinen alpinen Einzugsgebiet. Zeitschrift Fļr Geomorphologie, 2011, 55, 293-313.	0.8	2
32	Avalanche risk assessment for mountain roads: a case study from Iceland. Natural Hazards, 2011, 56, 465-480.	3.4	14
33	The structural vulnerability in the framework of natural hazard risk analyses and the exemplary application for storm loss modelling in Tyrol (Austria). Natural Hazards, 2011, 58, 705-729.	3.4	12
34	Surface classification based on multi-temporal airborne LiDAR intensity data in high mountain environments, A case study from Hintereisferner, Austria. Zeitschrift Fļr Geomorphologie, 2011, 55, 105-126.	0.8	15
35	Potential of airborne laser scanning for geomorphologic feature and process detection and quantifications in high alpine mountains. Zeitschrift FA¼r Geomorphologie, 2011, 55, 83-104.	0.8	33
36	Water surface mapping from airborne laser scanning using signal intensity and elevation data. Earth Surface Processes and Landforms, 2009, 34, 1635-1649.	2.5	140

Johann Stã¶tter

#	Article	IF	CITATIONS
37	9. Holocene glacier history. Developments in Quaternary Sciences, 2005, , 221-240.	0.1	3
38	Investigations on intra-annual elevation changes using multi-temporal airborne laser scanning data: case study Engabreen, Norway. Annals of Glaciology, 2005, 42, 195-201.	1.4	33
39	An Environmental Education Concept for Galtür, Austria. Journal of Geography in Higher Education, 2005, 29, 61-77.	2.6	5
40	Reconstruction of Holocene Variations of the Upper Limit of Tree or Shrub Birch Growth in Northern Iceland Based on Evidence from Vesturardalur-SkÃðadalur, Tröllaskagi. Arctic, Antarctic, and Alpine Research, 2001, 33, 191-203.	1.1	31
41	Sea Ice-Climate-Glacier Relationships in Northern Iceland since the Nineteenth Century: Possible Analogues for the Holocene. , 2001, , 187-200.		1
42	Reconstruction of Holocene Variations of the Upper Limit of Tree or Shrub Birch Growth in Northern Iceland Based on Evidence from Vesturardalur-Skidadalur, Trollaskagi. Arctic, Antarctic, and Alpine Research, 2001, 33, 191.	1.1	21
43	'Little Ice Age' glaciation of Tröllaskagi peninsula, northern Iceland: climatic implications for reconstructed equilibrium line altitudes (ELAS). Holocene, 1993, 3, 357-366.	1.7	35
44	New Observations on the Postglacial Glacial History of Tröllaskagi, Northern Iceland. Glaciology and Quaternary Geology, 1991, , 181-192.	0.5	10
45	Young People's Pre-Conceptions of the Interactions between Climate Change and Soils – Looking at a Physical Geography Topic from a Climate Change Education Perspective. Journal of Geography, 0, , 1-16.	1.5	2