Sergey Afonin

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/6104575/publications.pdf
Version: 2024-02-01

transverse piezoeffect. Journal of Computer and Systems Sciences International, 2015, 54, 424-439.

Absolute stability conditions for a system controlling the deformation of an electromagnetoelastic

Stability of strain control systems of nano- and microdisplacement piezotransducers. Mechanics of
Solids, 2014, 49, 196-207.
micrometric movements. Journal of Computer and Systems Sciences International, 2010, 49, 73-85.
A generalized structural-parametric model of an electromagnetoelastic converter for nano-and
8 micrometric movement control systems: III. Transformation of parametric structural circuits of an
8 electromagnetoelastic converter for nano-and micrometric movement control systems. Journal of
$0.6 \quad 14$ Computer and Systems Sciences International, 2006, 45, 317-325.

Static and dynamic characteristics of a multi-layer electroelastic solid. Mechanics of Solids, 2009, 44,

Generalized structural-parametric model of an electromagnetoelastic converter for control systems
13 of nano-and micrometric movements: IV. Investigation and calculation of characteristics of
$0.6 \quad 5$ step-piezodrive of nano-and micrometric movements. Journal of Computer and Systems Sciences International, 2006, 45, 1006-1013.
Absolute stability conditions for the control system of deformation of an electromagnetoelastic
14 converter for nano- and micrometric movements. Journal of Computer and Systems Sciences
International, 2008, 47, 111-117.
15 Investigation of static and dynamic characteristics of a piezomotor for nano-and micrometric movements. Journal of Computer and Systems Sciences International, 2008, 47, 778-785.
$0.6 \quad 3$

Block diagrams of a multilayer piezoelectric motor for nano- and microdisplacements based on the
16 Iongitudinal piezoelectric effect. Journal of Computer and Systems Sciences International, 2013, 52,

Correcting devices of control systems for deformation of multilayered piezodrives of nano- and

