Bjarke Jensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6104554/publications.pdf

Version: 2024-02-01

58	1,463	304743	361022
papers	citations	h-index	g-index
66	66	66	1268
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evolution and development of the building plan of the vertebrate heart. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 783-794.	4.1	109
2	Key Questions Relating to Left Ventricular Noncompaction Cardiomyopathy: Is the Emperor Still Wearing Any Clothes?. Canadian Journal of Cardiology, 2017, 33, 747-757.	1.7	99
3	Identifying the Evolutionary Building Blocks of the Cardiac Conduction System. PLoS ONE, 2012, 7, e44231.	2.5	95
4	Structure and function of the hearts of lizards and snakes. Biological Reviews, 2014, 89, 302-336.	10.4	92
5	Comparative cardiovascular physiology: future trends, opportunities and challenges. Acta Physiologica, 2014, 210, 257-276.	3.8	69
6	How the python heart separates pulmonary and systemic blood pressures and blood flows. Journal of Experimental Biology, 2010, 213, 1611-1617.	1.7	56
7	Evolutionarily conserved <i>Tbx5</i> – <i>Wnt2/2b</i> pathway orchestrates cardiopulmonary development. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10615-E10624.	7.1	55
8	Development of the Hearts of Lizards and Snakes and Perspectives to Cardiac Evolution. PLoS ONE, 2013, 8, e63651.	2.5	53
9	The hypertrabeculated (noncompacted) left ventricle is different from the ventricle of embryos and ectothermic vertebrates. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1696-1706.	4.1	47
10	Excessive trabeculations in noncompaction do not have the embryonic identity. International Journal of Cardiology, 2017, 227, 325-330.	1.7	41
11	Evolution and Development of Ventricular Septation in the Amniote Heart. PLoS ONE, 2014, 9, e106569.	2.5	40
12	The end of the unique myocardial band: Part I. Anatomical considerations. European Journal of Cardio-thoracic Surgery, 2018, 53, 112-119.	1.4	37
13	Specialized impulse conduction pathway in the alligator heart. ELife, 2018, 7, .	6.0	37
14	The electrocardiogram of vertebrates: Evolutionary changes from ectothermy to endothermy. Progress in Biophysics and Molecular Biology, 2019, 144, 16-29.	2.9	36
15	Anatomy of the python heart. Anatomical Science International, 2010, 85, 194-203.	1.0	34
16	Evolution and Development of the Atrial Septum. Anatomical Record, 2019, 302, 32-48.	1.4	34
17	Development of the atrial septum in relation to postnatal anatomy and interatrial communications. Heart, 2017, 103, 456-462.	2.9	33
18	Evolution of the Sinus Venosus from Fish to Human. Journal of Cardiovascular Development and Disease, 2014, 1, 14-28.	1.6	32

#	Article	IF	CITATIONS
19	Change of cardiac function, but not form, in postprandial pythons. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2011, 160, 35-42.	1.8	31
20	High-resolution ex vivo magnetic resonance angiography: a feasibility study on biological and medical tissues. BMC Physiology, 2010, 10, 3.	3.6	27
21	Hemodynamic Consequences of Cardiac Malformations in Two Juvenile Ball Pythons (Python regius). Journal of Zoo and Wildlife Medicine, 2009, 40, 752-756.	0.6	26
22	Morpho-functional characterization of the systemic venous pole of the reptile heart. Scientific Reports, 2017, 7, 6644.	3.3	26
23	Sequential segmental analysis of the crocodilian heart. Journal of Anatomy, 2017, 231, 484-499.	1.5	25
24	Quantified growth of the human embryonic heart. Biology Open, 2021, 10, .	1.2	25
25	The heart of the South American rattlesnake, <i>Crotalus durissus</i> . Journal of Morphology, 2010, 271, 1066-1077.	1.2	23
26	Cardiac Morphogenesis: Specification of the Four-Chambered Heart. Cold Spring Harbor Perspectives in Biology, 2020, 12, a037143.	5.5	21
27	Left ventricular non-compaction cardiomyopathy: how many needles in the haystack?. Heart, 2021, 107, 1344-1352.	2.9	20
28	Identification of the building blocks of ventricular septation in monitor lizards (Varanidae). Development (Cambridge), 2019, 146, .	2.5	18
29	Lack of morphometric evidence for ventricular compaction in humans. Journal of Cardiology, 2021, 78, 397-405.	1.9	18
30	Extreme variation in the atrial septation of caecilians (Amphibia: Gymnophiona). Journal of Anatomy, 2015, 226, 1-12.	1.5	17
31	The Anatomy, Development, and Evolution of the Atrioventricular Conduction Axis. Journal of Cardiovascular Development and Disease, 2018, 5, 44.	1.6	15
32	Structurally Abnormal Myocardium Underlies Ventricular Fibrillation Storms in a Patient Diagnosed With the EarlyÂRepolarization Pattern. JACC: Clinical Electrophysiology, 2020, 6, 1395-1404.	3.2	15
33	Higher spatial resolution improves the interpretation of the extent of ventricular trabeculation. Journal of Anatomy, 2022, 240, 357-375.	1.5	15
34	Comparative analysis of avian hearts provides little evidence for variation among species with acquired endothermy. Journal of Morphology, 2019, 280, 395-410.	1.2	14
35	Reptiles as a Model System to Study Heart Development. Cold Spring Harbor Perspectives in Biology, 2020, 12, a037226.	5.5	14
36	Coronary blood flow in the anesthetized American alligator (Alligator mississippiensis). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2016, 191, 44-52.	1.8	13

#	Article	IF	Citations
37	Relative position of the atrioventricular canal determines the electrical activation of developing reptile ventricles. Journal of Experimental Biology, 2018, 221, .	1.7	13
38	Sinus venosus incorporation: contentious issues and operational criteria for developmental and evolutionary studies. Journal of Anatomy, 2019, 234, 583-591.	1.5	12
39	Smooth Muscle in Cardiac Chambers is Common in Turtles and Extensive in the Emydid Turtle, Trachemys scripta. Anatomical Record, 2020, 303, 1327-1336.	1.4	11
40	High heart rate associated early repolarization causes Jâ€waves in both zebra finch and mouse. Physiological Reports, 2021, 9, e14775.	1.7	8
41	The formation of the atrioventricular conduction axis is linked in development to ventricular septation. Journal of Experimental Biology, 2020, 223, .	1.7	7
42	Anatomy of the heart with the highest heart rate. Journal of Anatomy, 2022, 241, 173-190.	1.5	7
43	Low incidence of atrial septal defects in nonmammalian vertebrates. Evolution & Development, 2020, 22, 241-256.	2.0	6
44	Examples of Weak, If Not Absent, Form-Function Relations in the Vertebrate Heart. Journal of Cardiovascular Development and Disease, 2018, 5, 46.	1.6	5
45	Virtual and augmented reality: New tools for visualizing, analyzing, and communicating complex morphology. Journal of Morphology, 2021, 282, 1785-1800.	1.2	5
46	Evolutionary Aspects of Cardiac Development. , 2016, , 109-117.		4
47	Hymenophore configuration of the oak mazegill (<i>Daedalea quercina</i>). Mycologia, 2020, 112, 895-907.	1.9	3
48	Fetal Tricuspid Valve Agenesis/Atresia: Testing Predictions of the Embryonic Etiology. Pediatric Cardiology, 2022, 43, 796-806.	1.3	3
49	Commemoration of Comparative Cardiac Anatomy of the Reptilia Iâ€IV. Journal of Morphology, 2019, 280, 623-626.	1.2	2
50	An Appreciation of Anatomy in the Molecular World. Journal of Cardiovascular Development and Disease, 2020, 7, 44.	1.6	2
51	Apes, adaptations, and artifacts of anesthetics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5573-5573.	7.1	2
52	The Atrioventricular Valve in the Animal Kingdom. , 2021, , 63-79.		2
53	\hat{l}_{\pm} ₁ -adrenergic stimulation increases ventricular action potential duration in the intact mouse heart. Facets, 2021, 6, 823-836.	2.4	2

 $Cate cholamines \ are \ key \ modulators \ of \ ventricular \ repolarization \ patterns \ in \ the \ ball \ python \ (Python) \ Tj \ ETQq0 \ 0 \ 0 \ resp. \\ If \ Python \ P$

4

54

BJARKE JENSEN

#	Article	IF	CITATIONS
55	Anatomy of the heart of the leatherback turtle. Journal of Anatomy, 2022, 241, 535-544.	1.5	2
56	The Epicardium in Ventricular Septation During Evolution and Development., 2016,, 115-123.		1
57	Development of the Ventricular Conduction System of the Crocodilian Heart. FASEB Journal, 2015, 29, 557.6.	0.5	O
58	Reply to Stöllberger et al Journal of Anatomy, 2022, , .	1.5	0