Ji Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/610449/publications.pdf

Version: 2024-02-01

304743 434195 1,177 31 22 31 citations h-index g-index papers 32 32 32 1048 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	TRV–GFP: a modified Tobacco rattle virus vector for efficient and visualizable analysis of gene function. Journal of Experimental Botany, 2014, 65, 311-322.	4.8	126
2	Mc <scp>MYB</scp> 10 regulates coloration via activating <i>McF3′H</i> and later structural genes in everâ€red leaf crabapple. Plant Biotechnology Journal, 2015, 13, 948-961.	8.3	92
3	Systematic identification of long noncoding <scp>RNA</scp> s expressed during lightâ€induced anthocyanin accumulation in apple fruit. Plant Journal, 2019, 100, 572-590.	5.7	91
4	The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit. Plant Cell, 2021, 33, 3309-3330.	6.6	80
5	Involvement of rose aquaporin RhPIP1;1 in ethylene-regulated petal expansion through interaction with RhPIP2;1. Plant Molecular Biology, 2013, 83, 219-233.	3.9	78
6	McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple. Scientific Reports, 2017, 7, 43715.	3.3	64
7	ldentification and validation of reference genes for gene expression studies in postharvest rose flower (Rosa hybrida). Scientia Horticulturae, 2013, 158, 16-21.	3.6	51
8	The MdMYB16/MdMYB1â€miR7125â€MdCCR module regulates the homeostasis between anthocyanin and lignin biosynthesis during light induction in apple. New Phytologist, 2021, 231, 1105-1122.	7. 3	50
9	Characteristics of dihydroflavonol 4-reductase gene promoters from different leaf colored Malus crabapple cultivars. Horticulture Research, 2017, 4, 17070.	6.3	45
10	A long nonâ€coding apple RNA, MSTRG.85814.11, acts as a transcriptional enhancer of <i>SAUR32</i> and contributes to the Feâ€deficiency response. Plant Journal, 2020, 103, 53-67.	5.7	42
11	Identification of leucoanthocyanidin reductase and anthocyanidin reductase genes involved in proanthocyanidin biosynthesis in Malus crabapple plants. Plant Physiology and Biochemistry, 2019, 139, 141-151.	5.8	39
12	Apple MPK4 mediates phosphorylation of MYB1 to enhance lightâ€induced anthocyanin accumulation. Plant Journal, 2021, 106, 1728-1745.	5.7	38
13	Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures. PLoS ONE, 2019, 14, e0210672.	2.5	34
14	A long noncoding RNA functions in high-light-induced anthocyanin accumulation in apple by activating ethylene synthesis. Plant Physiology, 2022, 189, 66-83.	4.8	31
15	Promotion of flavonoid biosynthesis in leaves and calli of ornamental crabapple (Malus sp.) by high carbon to nitrogen ratios. Frontiers in Plant Science, 2015, 6, 673.	3.6	30
16	An optimized TRV-based virus-induced gene silencing protocol for Malus crabapple. Plant Cell, Tissue and Organ Culture, 2016, 126, 499-509.	2.3	29
17	MiR399d and epigenetic modification comodulate anthocyanin accumulation in <i>Malus</i> leaves suffering from phosphorus deficiency. Plant, Cell and Environment, 2020, 43, 1148-1159.	5.7	29
18	Ethylene response factor MdERF4 and histone deacetylase MdHDA19 suppress apple fruit ripening through histone deacetylation of ripening-related genes. Plant Physiology, 2022, 188, 2166-2181.	4.8	29

#	Article	IF	CITATIONS
19	The Use of RNA Sequencing and Correlation Network Analysis to Study Potential Regulators of Crabapple Leaf Color Transformation. Plant and Cell Physiology, 2018, 59, 1027-1042.	3.1	28
20	Low Medium pH Value Enhances Anthocyanin Accumulation in Malus Crabapple Leaves. PLoS ONE, 2014, 9, e97904.	2.5	27
21	Tobacco rattle virus mediated gene silencing in strawberry plants. Plant Cell, Tissue and Organ Culture, 2015, 120, 1131-1138.	2.3	27
22	The expression level of anthocyanidin synthase determines the anthocyanin content of crabapple (Malus sp.) petals. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	24
23	Application of melatonin promotes anthocyanin accumulation in crabapple leaves. Plant Physiology and Biochemistry, 2019, 142, 332-341.	5. 8	20
24	ROS1 promotes low temperature-induced anthocyanin accumulation in apple by demethylating the promoter of anthocyanin-associated genes. Horticulture Research, 2022, 9, .	6.3	17
25	Phosphorylation of MdERF17 by MdMPK4 promotes apple fruit peel degreening during light/dark transitions. Plant Cell, 2022, 34, 1980-2000.	6.6	16
26	McMYB10 Modulates the Expression of a Ubiquitin Ligase, McCOP1 During Leaf Coloration in Crabapple. Frontiers in Plant Science, 2018, 9, 704.	3.6	15
27	The Structure and Methylation Level of the McMYB10 Promoter Determine the Leaf Color of Malus Crabapple. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 520-526.	1.0	8
28	MdMADS6 Recruits Histone Deacetylase MdHDA19 to Repress the Expression of the Carotenoid Synthesis-Related Gene MdCCD1 during Fruit Ripening. Plants, 2022, 11, 668.	3.5	7
29	RBP differentiation contributes to selective transmissibility of <i>OPT3</i> mRNAs. Plant Physiology, 2021, 187, 1587-1604.	4.8	5
30	Longâ€distance mobile mRNA <i>CAX3</i> modulates iron uptake and zinc compartmentalization. EMBO Reports, 2022, 23, e53698.	4.5	4
31	The RNA Directed DNA Methylation (RdDM) Pathway Regulates Anthocyanin Biosynthesis in Crabapple (Malus cv. spp.) Leaves by Methylating the McCOP1 Promoter. Plants, 2021, 10, 2466.	3 . 5	1