Emmanuel Simon Pierre Branlard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6104455/publications.pdf

Version: 2024-02-01

54 papers

422 citations

858243 12 h-index 20 g-index

74 all docs

74 docs citations

times ranked

74

237 citing authors

#	Article	IF	CITATIONS
1	Numerical investigation of wind turbine wakes under high thrust coefficient. Wind Energy, 2022, 25, 605-617.	1.9	9
2	A multipurpose lifting-line flow solver for arbitrary wind energy concepts. Wind Energy Science, 2022, 7, 455-467.	1.2	8
3	Influence of wind turbine design parameters on linearized physics-based models in OpenFAST. Wind Energy Science, 2022, 7, 559-571.	1.2	5
4	Multimodel validation of single wakes in neutral and stratified atmospheric conditions. Wind Energy, 2020, 23, 2027-2055.	1.9	46
5	Assessing the blockage effect of wind turbines and wind farms using an analytical vortex model. Wind Energy, 2020, 23, 2068-2086.	1.9	37
6	A digital twin based on OpenFAST linearizations for real-time load and fatigue estimation of land-based turbines. Journal of Physics: Conference Series, 2020, 1618, 022030.	0.3	12
7	Investigation of the nacelle blockage effect for a downwind turbine. Journal of Physics: Conference Series, 2020, 1618, 062062.	0.3	3
8	Wind farm blockage effects: comparison of different engineering models. Journal of Physics: Conference Series, 2020, 1618, 062036.	0.3	15
9	Augmented Kalman filter with a reduced mechanical model to estimate tower loads on a land-based wind turbine: a step towards digital-twin simulations. Wind Energy Science, 2020, 5, 1155-1167.	1.2	24
10	Flexible multibody dynamics using joint coordinates and the Rayleighâ€Ritz approximation: The general framework behind and beyond Flex. Wind Energy, 2019, 22, 877-893.	1.9	15
11	Rotor and Wind Turbine Formalism. Research Topics in Wind Energy, 2017, , 113-119.	0.2	O
12	The Blade Element Momentum (BEM) Method. Research Topics in Wind Energy, 2017, , 181-211.	0.2	4
13	Momentum Theory. Research Topics in Wind Energy, 2017, , 157-180.	0.2	O
14	Spherical Geometry Models: Flow About a Sphere and Hill's Vortex. Research Topics in Wind Energy, 2017, , 407-417.	0.2	0
15	OmniVor: An Example of Vortex Code Implementation. Research Topics in Wind Energy, 2017, , 575-586.	0.2	O
16	Flows with a Spread Distribution of Vorticity. Research Topics in Wind Energy, 2017, , 401-406.	0.2	0
17	Wind Turbine Aerodynamics and Vorticity-Based Methods. Research Topics in Wind Energy, 2017, , .	0.2	65
18	Far-Wake Analyses and the Rigid Helical Wake. Research Topics in Wind Energy, 2017, , 215-222.	0.2	1

#	Article	IF	CITATIONS
19	Goldstein's Optimal Circulation. Research Topics in Wind Energy, 2017, , 247-253.	0.2	O
20	Examples of Applications of Vortex Methods to Wind Energy. Research Topics in Wind Energy, 2017, , 347-353.	0.2	0
21	Kutta–Joukowski (KJ) Theorem Applied to a Rotor. Research Topics in Wind Energy, 2017, , 151-156.	0.2	O
22	Representation of a (Turbulent) Velocity Field Using Vortex Particles. Research Topics in Wind Energy, 2017, , 355-360.	0.2	0
23	Flow Induced by a Vortex Disk. Research Topics in Wind Energy, 2017, , 455-460.	0.2	O
24	Yaw-Modelling Using a Skewed Vortex Cylinder. Research Topics in Wind Energy, 2017, , 299-306.	0.2	0
25	Lifting Bodies and Circulation. Research Topics in Wind Energy, 2017, , 83-110.	0.2	O
26	Cylindrical Vortex Model of a Rotor of Finite or Infinite Tip-Speed Ratios. Research Topics in Wind Energy, 2017, , 265-272.	0.2	0
27	Velocity Field Upstream of Aligned and Yawed Rotors: Wind Turbine and Wind Farm Induction Zone. Research Topics in Wind Energy, 2017, , 321-332.	0.2	O
28	An Improved BEM Algorithm Accounting for Wake Rotation Effects. Research Topics in Wind Energy, 2017, , 283-291.	0.2	0
29	Vortex Code Validation and Illustration. Research Topics in Wind Energy, 2017, , 587-593.	0.2	O
30	Vortex Systems and Models of a Rotor - Bound, Root and Wake Vorticity. Research Topics in Wind Energy, 2017, , 121-133.	0.2	0
31	Effect of a Wind Turbine on the Turbulent Inflow. Research Topics in Wind Energy, 2017, , 361-369.	0.2	O
32	Relation Between Far-Wake and Near-Wake Parameters. Research Topics in Wind Energy, 2017, , 259-262.	0.2	0
33	Theoretical Foundations for Flows Involving Vorticity. Research Topics in Wind Energy, 2017, , 11-82.	0.2	O
34	Simple Implementation of a New Yaw-Model. Research Topics in Wind Energy, 2017, , 307-313.	0.2	0
35	Flow Induced by a Skewed Vortex Cylinder. Research Topics in Wind Energy, 2017, , 461-471.	0.2	O
36	Numerical Implementation of Vortex Methods. Research Topics in Wind Energy, 2017, , 553-573.	0.2	O

#	Article	IF	Citations
37	Blade Element Theory (BET). Research Topics in Wind Energy, 2017, , 143-149.	0.2	O
38	The Different Aspects of Vortex Methods. Research Topics in Wind Energy, 2017, , 493-543.	0.2	0
39	A Brief Introduction to Vortex Methods. Research Topics in Wind Energy, 2017, , 483-492.	0.2	3
40	Flow Induced by a Right Vortex Cylinder. Research Topics in Wind Energy, 2017, , 429-453.	0.2	0
41	Flow Induced by Helical Vortex Filaments. Research Topics in Wind Energy, 2017, , 473-479.	0.2	O
42	Considerations and Challenges Specific to Rotor Aerodynamics. Research Topics in Wind Energy, 2017, , 135-141.	0.2	1
43	Elementary Three-Dimensional Flows. Research Topics in Wind Energy, 2017, , 381-392.	0.2	O
44	Betz Theory of Optimal Circulation. Research Topics in Wind Energy, 2017, , 223-225.	0.2	0
45	Tip-Losses with Focus on Prandlt's Tip Loss Factor. Research Topics in Wind Energy, 2017, , 227-245.	0.2	2
46	Aeroelastic Simulation of a Wind Turbine Under Turbulent and Sheared Conditions. Research Topics in Wind Energy, 2017, , 371-378.	0.2	0
47	Vortex and Source Rings. Research Topics in Wind Energy, 2017, , 419-428.	0.2	O
48	Superposition of vortex cylinders for steady and unsteady simulation of rotors of finite tipâ€speed ratio. Wind Energy, 2016, 19, 1307-1323.	1.9	22
49	Impact of a wind turbine on turbulence: Un-freezing turbulence by means of a simple vortex particle approach. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 151, 37-47.	1.7	15
50	Cylindrical vortex wake model: skewed cylinder, application to yawed or tilted rotors. Wind Energy, 2016, 19, 345-358.	1.9	16
51	Cylindrical vortex wake model: right cylinder. Wind Energy, 2015, 18, 1973-1987.	1.9	31
52	Development of new tip-loss corrections based on vortex theory and vortex methods. Journal of Physics: Conference Series, 2014, 555, 012012.	0.3	11
53	Vortex methods to answer the need for improved understanding and modelling of tipâ€loss factors. IET Renewable Power Generation, 2013, 7, 311-320.	1.7	24
54	Retrieving wind statistics from average spectrum of continuous-wave lidar. Atmospheric Measurement Techniques, 2013, 6, 1673-1683.	1.2	31