
Richard Daneman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6104000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging roles for CNS fibroblasts in health, injury and disease. Nature Reviews Neuroscience, 2022, 23, 23-34.	4.9	74
2	Engineered Wnt ligands enable blood-brain barrier repair in neurological disorders. Science, 2022, 375, eabm4459.	6.0	67
3	Distinct features of brain perivascular fibroblasts and mural cells revealed by <i>in vivo</i> two-photon imaging. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 966-978.	2.4	33
4	Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature, 2022, 604, 740-748.	13.7	107
5	CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nature Neuroscience, 2021, 24, 234-244.	7.1	120
6	Astrocytes propel neurovascular dysfunction during cerebral cavernous malformation lesion formation. Journal of Clinical Investigation, 2021, 131, .	3.9	32
7	Emerging roles for CNS fibroblasts in health, injury and disease. Nature Reviews Neuroscience, 2021, , .	4.9	2
8	Neuronal Activity Regulates Blood-Brain Barrier Efflux Transport through Endothelial Circadian Genes. Neuron, 2020, 108, 937-952.e7.	3.8	86
9	The blood–brain barrier in health and disease: Important unanswered questions. Journal of Experimental Medicine, 2020, 217, .	4.2	365
10	Multidimensional Proteome Profiling of Blood-Brain Barrier Perturbation by Group B <i>Streptococcus</i> . MSystems, 2020, 5, .	1.7	7
11	Unexpected amount of blood-borne protein enters the young brain. Nature, 2020, 583, 362-363.	13.7	5
12	Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood–brain barrier dysfunction module. Nature Neuroscience, 2019, 22, 1892-1902.	7.1	225
13	Delivering genes across the blood-brain barrier: LY6A, a novel cellular receptor for AAV-PHP.B capsids. PLoS ONE, 2019, 14, e0225206.	1.1	145
14	Human pluripotent stem cell–derived brain pericyte–like cells induce blood-brain barrier properties. Science Advances, 2019, 5, eaau7375.	4.7	135
15	Activation of RARα, RARγ, or RXRα Increases Barrier Tightness in Human Induced Pluripotent Stem Cellâ€Derived Brain Endothelial Cells. Biotechnology Journal, 2018, 13, 1700093.	1.8	39
16	Altered cargo proteins of human plasma endothelial cell–derived exosomes in atherosclerotic cerebrovascular disease. FASEB Journal, 2017, 31, 3689-3694.	0.2	71
17	A Basic ApoE-Based Peptide Mediator to Deliver Proteins across the Blood-Brain Barrier: Long-Term Efficacy, Toxicity, and Mechanism. Molecular Therapy, 2017, 25, 1531-1543.	3.7	24
18	Brain barriers in health and disease. Neurobiology of Disease, 2017, 107, 1-3.	2.1	34

RICHARD DANEMAN

#	Article	IF	CITATIONS
19	Finding NMO. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e313.	3.1	4
20	Evolutionarily Conserved Roles for Blood-Brain Barrier Xenobiotic Transporters in Endogenous Steroid Partitioning and Behavior. Cell Reports, 2017, 21, 1304-1316.	2.9	48
21	The amazing brain drain. Journal of Experimental Medicine, 2017, 214, 3469-3470.	4.2	7
22	Peripheral and central neuronal ATF3 precedes CD4+ T-cell infiltration in EAE. Experimental Neurology, 2016, 283, 224-234.	2.0	24
23	Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science, 2016, 351, 379-384.	6.0	319
24	The Blood–Brain Barrier. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020412.	2.3	2,107
25	Formation and maintenance of the BBB. Mechanisms of Development, 2015, 138, 8-16.	1.7	170
26	LSR/angulin-1 is a tricellular tight junction protein involved in blood–brain barrier formation. Journal of Cell Biology, 2015, 208, 703-711.	2.3	108
27	Dissecting gene expression at the blood-brain barrier. Frontiers in Neuroscience, 2014, 8, 355.	1.4	30
28	High endothelial venules through a transcriptomics lens. Nature Immunology, 2014, 15, 906-908.	7.0	1
29	Experimental Cerebral Malaria Pathogenesis—Hemodynamics at the Blood Brain Barrier. PLoS Pathogens, 2014, 10, e1004528.	2.1	83
30	Regulation of Intrinsic Axon Growth Ability at Retinal Ganglion Cell Growth Cones. , 2014, 55, 4369.		44
31	Purification and Culture of Central Nervous System Pericytes. Cold Spring Harbor Protocols, 2014, 2014, pdb.top070888-pdb.top070888.	0.2	5
32	Purification of Pericytes from Rodent Optic Nerve by Immunopanning. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot074955-pdb.prot074955.	0.2	4
33	Oligodendrocyte-Encoded HIF Function Couples Postnatal Myelination and White Matter Angiogenesis. Cell, 2014, 158, 383-396.	13.5	314
34	An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. Journal of Neuroscience, 2014, 34, 11929-11947.	1.7	4,119
35	Development, maintenance and disruption of the blood-brain barrier. Nature Medicine, 2013, 19, 1584-1596.	15.2	1,750
36	â€~Sealing off the CNS': cellular and molecular regulation of blood–brain barriergenesis. Current Opinion in Neurobiology, 2013, 23, 1057-1064.	2.0	93

RICHARD DANEMAN

#	Article	IF	CITATION
37	Genetic mouse models to study blood–brain barrier development and function. Fluids and Barriers of the CNS, 2013, 10, 3.	2.4	28
38	Foxc1 is required by pericytes during fetal brain angiogenesis. Biology Open, 2013, 2, 647-659.	0.6	64
39	Roles for pericytes at the neurovascular unit. FASEB Journal, 2013, 27, 320.2.	0.2	0
40	The blood–brain barrier in health and disease. Annals of Neurology, 2012, 72, 648-672.	2.8	592
41	The Mouse Blood-Brain Barrier Transcriptome: A New Resource for Understanding the Development and Function of Brain Endothelial Cells. PLoS ONE, 2010, 5, e13741.	1.1	481
42	Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature, 2010, 468, 562-566.	13.7	1,675
43	The Gut Immune Barrier and the Blood-Brain Barrier: Are They So Different?. Immunity, 2009, 31, 722-735.	6.6	111
44	Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 641-646.	3.3	624
45	The Blood-Brain Barrier— Lessons from Moody Flies. Cell, 2005, 123, 9-12.	13.5	53