Bulak A Arpat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6103884/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptome-wide sites of collided ribosomes reveal principles of translational pausing. Genome Research, 2020, 30, 985-999.	5.5	73
2	Mammalian RNA Decay Pathways Are Highly Specialized and Widely Linked to Translation. Molecular Cell, 2020, 77, 1222-1236.e13.	9.7	78
3	Guidelines for Genome-Scale Analysis of Biological Rhythms. Journal of Biological Rhythms, 2017, 32, 380-393.	2.6	237
4	Translational contributions to tissue specificity in rhythmic and constitutive gene expression. Genome Biology, 2017, 18, 116.	8.8	54
5	Disruption of <i>Os<scp>SULTR</scp>3;3</i> reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains. New Phytologist, 2016, 211, 926-939.	7.3	72
6	Analyzing the temporal regulation of translation efficiency in mouse liver. Genomics Data, 2016, 8, 41-44.	1.3	6
7	The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases. Nucleic Acids Research, 2016, 44, D27-D37.	14.5	64
8	A Neuron-Specific Deletion of the MicroRNA-Processing Enzyme DICER Induces Severe but Transient Obesity in Mice. PLoS ONE, 2015, 10, e0116760.	2.5	20
9	Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames. Genome Research, 2015, 25, 1848-1859.	5.5	151
10	MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale. ELife, 2014, 3, e02510.	6.0	98
11	The emerging importance of the SPX domainâ€containing proteins in phosphate homeostasis. New Phytologist, 2012, 193, 842-851.	7.3	269
12	Functional expression of PHO1 to the Golgi and <i>trans</i> â€Golgi network and its role in export of inorganic phosphate. Plant Journal, 2012, 71, 479-491.	5.7	125
13	Uncoupling phosphate deficiency from its major effects on growth and transcriptome via PHO1 expression in Arabidopsis. Plant Journal, 2011, 65, 557-570.	5.7	130
14	Overâ€expression of PHO1 in Arabidopsis leaves reveals its role in mediating phosphate efflux. Plant Journal, 2011, 66, 689-699.	5.7	95
15	Contributions of the Peroxisome and \hat{l}^2 -Oxidation Cycle to Biotin Synthesis in Fungi. Journal of Biological Chemistry, 2011, 286, 42133-42140.	3.4	32
16	Regulation of ion homeostasis in plants: Current approaches and future challenges. Plant Signaling and Behavior, 2010, 5, 501-502.	2.4	20
17	Regulation of Phosphate Starvation Responses in Plants: Signaling Players and Cross-Talks. Molecular Plant, 2010, 3, 288-299.	8.3	334
18	Getting the most sulfate from soil: Regulation of sulfate uptake transporters in Arabidopsis. Journal of Plant Physiology, 2009, 166, 893-902.	3.5	34

BULAK A ARPAT

#	Article	IF	CITATIONS
19	Differential Regulation of the Expression of Two High-Affinity Sulfate Transporters, SULTR1.1 and SULTR1.2, in Arabidopsis Â. Plant Physiology, 2008, 147, 897-911.	4.8	153
20	A global assembly of cotton ESTs. Genome Research, 2006, 16, 441-450.	5.5	138
21	The cotton fiber transcriptome. Physiologia Plantarum, 2005, 124, 295-300.	5.2	98
22	Functional genomics of cell elongation in developing cotton fibers. Plant Molecular Biology, 2004, 54, 911-929.	3.9	237
23	DNA Microarray Experiments: Biological and Technological Aspects. Biometrics, 2002, 58, 701-717.	1.4	137