Abhay Bangalore Ramachandra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/610380/publications.pdf Version: 2024-02-01

Abhay Bangalore

#	Article	IF	CITATIONS
1	Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Science Translational Medicine, 2020, 12, .	12.4	81
2	Optimization of Tissue-Engineered Vascular Graft Design Using Computational Modeling. Tissue Engineering - Part C: Methods, 2019, 25, 561-570.	2.1	47
3	Patient-Specific Simulations Reveal Significant Differences in Mechanical Stimuli in Venous and Arterial Coronary Grafts. Journal of Cardiovascular Translational Research, 2016, 9, 279-290.	2.4	35
4	Gradual loading ameliorates maladaptation in computational simulations of vein graft growth and remodelling. Journal of the Royal Society Interface, 2017, 14, 20160995.	3.4	34
5	Computational Simulation of the Adaptive Capacity of Vein Grafts in Response to Increased Pressure. Journal of Biomechanical Engineering, 2015, 137, .	1.3	29
6	Excessive adventitial stress drives inflammation-mediated fibrosis in hypertensive aortic remodelling in mice. Journal of the Royal Society Interface, 2021, 18, 20210336.	3.4	24
7	Mechanics-driven mechanobiological mechanisms of arterial tortuosity. Science Advances, 2020, 6, .	10.3	24
8	Hemodynamic performance of tissue-engineered vascular grafts in Fontan patients. Npj Regenerative Medicine, 2021, 6, 38.	5.2	23
9	Biomechanical characterization of murine pulmonary arteries. Journal of Biomechanics, 2019, 84, 18-26.	2.1	21
10	A computational bio-chemo-mechanical model of in vivo tissue-engineered vascular graft development. Integrative Biology (United Kingdom), 2020, 12, 47-63.	1.3	19
11	Effects of Braiding Parameters on Tissue Engineered Vascular Graft Development. Advanced Healthcare Materials, 2020, 9, e2001093.	7.6	18
12	Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth. Communications Medicine, 2022, 2, .	4.2	18
13	Artery to vein configuration of arteriovenous fistula improves hemodynamics to increase maturation and patency. Science Translational Medicine, 2020, 12, .	12.4	15
14	Computational Evaluation of Venous Graft Geometries in Coronary Artery Bypass Surgery. Seminars in Thoracic and Cardiovascular Surgery, 2022, 34, 521-532.	0.6	12
15	Vascular adaptation in the presence of external support - A modeling study. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103943.	3.1	10
16	Mechanisms of Hypoxia-Induced Pulmonary Arterial Stiffening in Mice Revealed by a Functional Genetics Assay of Structural, Functional, and Transcriptomic Data. Frontiers in Physiology, 2021, 12, 726253.	2.8	5
17	In vivo development of tissue engineered vascular grafts: a fluid-solid-growth model. Biomechanics and Modeling in Mechanobiology, 2022, 21, 827-848.	2.8	5
18	Deletion of matrix metalloproteinase-12 compromises mechanical homeostasis and leads to an aged aortic phenotype in young mice. Journal of Biomechanics, 2022, 141, 111179.	2.1	3

#	Article	IF	CITATIONS
19	Compromised Cardiopulmonary Function in Fibulin-5 Deficient Mice. Journal of Biomechanical Engineering, 2022, 144, .	1.3	0