List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6103783/publications.pdf Version: 2024-02-01

DEIVIINLI

#	Article	IF	CITATIONS
1	Effect of the Nature of the Spacer on the Aggregation Properties of Gemini Surfactants in an Aqueous Solution. Langmuir, 2004, 20, 53-56.	1.6	175
2	Adsorption of Oppositely Charged Polyelectrolyte/Surfactant Mixtures. Neutron Reflection from Alkyl Trimethylammonium Bromides and Sodium Poly(styrenesulfonate) at the Air/Water Interface:Â The Effect of Surfactant Chain Length. Langmuir, 2003, 19, 3712-3719.	1.6	122
3	Limitations in the Application of the Gibbs Equation to Anionic Surfactants at the Air/Water Surface: Sodium Dodecylsulfate and Sodium Dodecylmonooxyethylenesulfate Above and Below the CMC. Langmuir, 2013, 29, 9335-9351.	1.6	109
4	Aggregation behavior of hexadecyltrimethylammonium surfactants with various counterions in aqueous solution. Journal of Colloid and Interface Science, 2005, 286, 755-760.	5.0	98
5	Application of the Gibbs Equation to the Adsorption of Nonionic Surfactants and Polymers at the Air–Water Interface: Comparison with Surface Excesses Determined Directly using Neutron Reflectivity. Langmuir, 2013, 29, 9324-9334.	1.6	88
6	Micellization of Cationic Gemini Surfactants with Various Counterions and Their Interaction with DNA in Aqueous Solution. Journal of Physical Chemistry B, 2004, 108, 15385-15391.	1.2	86
7	Limitations in the Use of Surface Tension and the Gibbs Equation To Determine Surface Excesses of Cationic Surfactants. Langmuir, 2014, 30, 6739-6747.	1.6	75
8	Synthesis and characterization of a high oil-absorbing magnetic composite material. Journal of Applied Polymer Science, 2004, 93, 894-900.	1.3	64
9	Quiescent bilayers at the mica–water interface. Soft Matter, 2013, 9, 7028.	1.2	47
10	Analysis of the Asymmetric Synergy in the Adsorption of Zwitterionic–Ionic Surfactant Mixtures at the Air–Water Interface below and above the Critical Micelle Concentration. Journal of Physical Chemistry B, 2016, 120, 3677-3691.	1.2	42
11	Exploring the bulk-phase structure of ionic liquid mixtures using small-angle neutron scattering. Faraday Discussions, 2018, 206, 265-289.	1.6	42
12	Adsorption and self-assembly properties of the plant based biosurfactant, Glycyrrhizic acid. Journal of Colloid and Interface Science, 2021, 598, 444-454.	5.0	41
13	Odd/Even Effect in the Chain Length on the Enthalpy of Micellization of Gemini Surfactants in Aqueous Solution. Langmuir, 2005, 21, 6703-6706.	1.6	40
14	Aggregation Properties of Cationic Gemini Surfactants with Partially Fluorinated Spacers in Aqueous Solution. Langmuir, 2006, 22, 42-45.	1.6	40
15	Neutron Reflectometry of Quaternary Gemini Surfactants as a Function of Alkyl Chain Length: Anomalies Arising from Ion Association and Premicellar Aggregation. Langmuir, 2011, 27, 2575-2586.	1.6	39
16	Surface Behavior, Aggregation and Phase Separation of Aqueous Mixtures of Dodecyl Trimethylammonium Bromide and Sodium Oligoarene Sulfonates: the Transition to Polyelectrolyte/Surfactant Behavior. Langmuir, 2012, 28, 327-338.	1.6	38
17	Interaction of a Cationic Gemini Surfactant with DNA and with Sodium Poly(styrene sulphonate) at the Air/Water Interface: A Neutron Reflectometry Study. Langmuir, 2009, 25, 4027-4035.	1.6	36
18	Synchrotron XRR study of soft nanofilms at the mica–water interface. Soft Matter, 2012, 8, 5055.	1.2	36

#	Article	IF	CITATIONS
19	How do Self-Assembling Antimicrobial Lipopeptides Kill Bacteria?. ACS Applied Materials & Interfaces, 2020, 12, 55675-55687.	4.0	35
20	What happens when pesticides are solubilized in nonionic surfactant micelles. Journal of Colloid and Interface Science, 2019, 541, 175-182.	5.0	31
21	Spontaneous Surface Self-Assembly in Protein–Surfactant Mixtures: Interactions between Hydrophobin and Ethoxylated Polysorbate Surfactants. Journal of Physical Chemistry B, 2014, 118, 4867-4875.	1.2	30
22	Counterion binding alters surfactant self-assembly in deep eutectic solvents. Physical Chemistry Chemical Physics, 2018, 20, 13952-13961.	1.3	30
23	Adsorption at Air–Water and Oil–Water Interfaces and Self-Assembly in Aqueous Solution of Ethoxylated Polysorbate Nonionic Surfactants. Langmuir, 2015, 31, 3003-3011.	1.6	29
24	Effects of length and hydrophilicity/hydrophobicity of diamines on self-assembly of diamine/SDS gemini-like surfactants. Soft Matter, 2017, 13, 8980-8989.	1.2	28
25	Multilayers formed by polyelectrolyte-surfactant and related mixtures at the air-water interface. Advances in Colloid and Interface Science, 2019, 269, 43-86.	7.0	27
26	Surfactant/biosurfactant mixing: Adsorption of saponin/nonionic surfactant mixtures at the air-water interface. Journal of Colloid and Interface Science, 2020, 574, 385-392.	5.0	27
27	Thermodynamics of micellization for partially fluorinated cationic gemini surfactants and related single–chain surfactants in aqueous solution. Journal of Colloid and Interface Science, 2005, 287, 333-337.	5.0	24
28	Surfactant and Plasticizer Segregation in Thin Poly(vinyl alcohol) Films. Langmuir, 2016, 32, 864-872.	1.6	24
29	Revealing the Hidden Details of Nanostructure in a Pharmaceutical Cream. Scientific Reports, 2020, 10, 4082.	1.6	24
30	Adsorption of DNA and Dodecyl Trimethylammonium Bromide Mixtures at the Air/Water Interface:  A Neutron Reflectometry Study. Langmuir, 2008, 24, 1863-1872.	1.6	21
31	Antibody adsorption on the surface of water studied by neutron reflection. MAbs, 2017, 9, 466-475.	2.6	21
32	Adsorption and self-assembly in methyl ester sulfonate surfactants, their eutectic mixtures and the role of electrolyte. Journal of Colloid and Interface Science, 2018, 516, 456-465.	5.0	20
33	Interaction of Polymer and Surfactant at the Airâ^Water Interface: Poly(2-(dimethylamino)ethyl) Tj ETQq1 1 0	.784314 rgE 1.6	BT /Overlock
34	Structure of Partially Fluorinated Surfactant Monolayers at the Airâ^'Water Interface. Langmuir, 2009, 25, 3957-3965.	1.6	19
35	Mixing Natural and Synthetic Surfactants: Co-Adsorption of Triterpenoid Saponins and Sodium Dodecyl Sulfate at the Air–Water Interface. Langmuir, 2020, 36, 5997-6006.	1.6	19
36	Adsorption of Methyl Ester Sulfonate at the Air–Water Interface: Can Limitations in the Application of the Gibbs Equation be Overcome by Computer Purification?. Langmuir, 2017, 33, 9944-9953.	1.6	18

#	Article	IF	CITATIONS
37	The impact of electrolyte on the adsorption of the anionic surfactant methyl ester sulfonate at the air-solution interface: Surface multilayer formation. Journal of Colloid and Interface Science, 2018, 512, 231-238.	5.0	18
38	Synergy, competition, and the "hanging―polymer layer: Interactions between a neutral amphiphilic â€~tardigrade' comb co-polymer with an anionic surfactant at the air-water interface. Journal of Colloid and Interface Science, 2020, 561, 181-194.	5.0	17
39	Strong synergistic interactions in zwitterionic–anionic surfactant mixtures at the air–water interface and in micelles: The role of steric and electrostatic interactions. Journal of Colloid and Interface Science, 2022, 613, 297-310.	5.0	16
40	Impact of the Degree of Ethoxylation of the Ethoxylated Polysorbate Nonionic Surfactant on the Surface Self-Assembly of Hydrophobin-Ethoxylated Polysorbate Surfactant Mixtures. Langmuir, 2014, 30, 9741-9751.	1.6	15
41	Blooming of Smectic Surfactant/Plasticizer Layers on Spin-Cast Poly(vinyl alcohol) Films. Langmuir, 2018, 34, 1410-1418.	1.6	15
42	The structure of alkyl ester sulfonate surfactant micelles: The impact of different valence electrolytes and surfactant structure on micelle growth. Journal of Colloid and Interface Science, 2019, 557, 124-134.	5.0	15
43	How does substrate hydrophobicity affect the morphological features of reconstituted wax films and their interactions with nonionic surfactant and pesticide?. Journal of Colloid and Interface Science, 2020, 575, 245-253.	5.0	15
44	Influence of the Surfactant Structure on Photoluminescent π-Conjugated Polymer Nanoparticles: Interfacial Properties and Protein Binding. Langmuir, 2018, 34, 6125-6137.	1.6	14
45	Impact of molecular structure, headgroup and alkyl chain geometry, on the adsorption of the anionic ester sulfonate surfactants at the air-solution interface, in the presence and absence of electrolyte. Journal of Colloid and Interface Science, 2019, 544, 293-302.	5.0	14
46	Cryogenic viscoelastic surfactant fluids: Fabrication and application in a subzero environment. Journal of Colloid and Interface Science, 2019, 551, 89-100.	5.0	13
47	Solubility of ethane int-butanol + water mixtures and a hydrophobic interaction study. Journal of Solution Chemistry, 1996, 25, 1281-1289.	0.6	12
48	Solvent effect on the aggregate of fluorinated gemini surfactant at silica surface. Journal of Colloid and Interface Science, 2006, 304, 37-44.	5.0	12
49	Cryogenic wormlike micelles. Soft Matter, 2019, 15, 2511-2516.	1.2	12
50	Surface adsorption and solution aggregation of a novel lauroyl-l-carnitine surfactant. Journal of Colloid and Interface Science, 2021, 591, 106-114.	5.0	12
51	Multivalent-Counterion-Induced Surfactant Multilayer Formation at Hydrophobic and Hydrophilic Solid–Solution Interfaces. Langmuir, 2015, 31, 6773-6781.	1.6	11
52	Biogenic amine – Surfactant interactions at the air–water interface. Journal of Colloid and Interface Science, 2015, 449, 167-174.	5.0	11
53	Structural Features of Reconstituted Cuticular Wax Films upon Interaction with Nonionic Surfactant C ₁₂ E ₆ . Langmuir, 2018, 34, 3395-3404.	1.6	11
54	How does solubilisation of plant waxes into nonionic surfactant micelles affect pesticide release?. Journal of Colloid and Interface Science, 2019, 556, 650-657.	5.0	11

#	Article	IF	CITATIONS
55	Self-assembly in saponin mixtures: Escin/tea, tea/glycyrrhizic acid, and escin/glycyrrhizic acid mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127420.	2.3	11
56	Tuning Polyelectrolyte–Surfactant Interactions: Modification of Poly(ethylenimine) with Propylene Oxide and Blocks of Ethylene Oxide. Langmuir, 2016, 32, 1073-1081.	1.6	10
57	The role of competitive counterion adsorption on the electrolyte induced surface ordering in methyl ester sulfonate surfactants at the air-water interface. Journal of Colloid and Interface Science, 2019, 533, 154-160.	5.0	10
58	In-Membrane Nanostructuring of Cationic Amphiphiles Affects Their Antimicrobial Efficacy and Cytotoxicity: A Comparison Study between a De Novo Antimicrobial Lipopeptide and Traditional Biocides. Langmuir, 2022, 38, 6623-6637.	1.6	10
59	Solubilities of Ethane in Aqueous Solutions of Sodium Dodecyl Sulfate at Elevated Pressures. Journal of Colloid and Interface Science, 1995, 175, 57-60.	5.0	9
60	Adsorption of Gemini Surfactants with Dodecyl Side Chains and Different Spacers, Including Partially Fluorinated Spacers, on Different Surfaces: Neutron Reflectometry Results. Langmuir, 2011, 27, 1844-1852.	1.6	9
61	Nature of the Intermicellar Interactions in Ethoxylated Polysorbate Surfactants with High Degrees of Ethoxylation. Langmuir, 2016, 32, 1319-1326.	1.6	9
62	Multivalent electrolyte induced surface ordering and solution self-assembly in anionic surfactant mixtures: Sodium dodecyl sulfate and sodium diethylene glycol monododecyl sulfate. Journal of Colloid and Interface Science, 2020, 565, 567-581.	5.0	9
63	Self-assembly in saponin/surfactant mixtures: Escin and sodium dodecylsulfate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127019.	2.3	9
64	An insight into the thermo-thickening behavior of wormlike micellar solutions based on ultra-long-chain surfactants. Physical Chemistry Chemical Physics, 2022, 24, 11112-11123.	1.3	9
65	Self-assembly in escin-nonionic surfactant mixtures: From micelles to vesicles. Journal of Colloid and Interface Science, 2022, 626, 305-313.	5.0	9
66	Vapor Pressure of the Aqueous Solution of Sodium Dodecyl Sulfate. Journal of Chemical & Engineering Data, 1996, 41, 285-286.	1.0	8
67	Unusual Adsorption at the Air–Water Interface of a Zwitterionic Carboxybetaine with a Large Charge Separation. Langmuir, 2016, 32, 3340-3347.	1.6	7
68	Coadsorption of a Monoclonal Antibody and Nonionic Surfactant at the SiO2/Water Interface. ACS Applied Materials & Interfaces, 2018, 10, 44257-44266.	4.0	7
69	Implications of surfactant hydrophobic chain architecture on the Surfactant-Skin lipid model interaction. Journal of Colloid and Interface Science, 2022, 608, 405-415.	5.0	7
70	Self-assembly of Quillaja saponin mixtures with different conventional synthetic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127854.	2.3	7
71	Small-angle neutron scattering from mixtures of long- and short-chain 3-alkyl-1-methyl imidazolium bistriflimides. Physical Chemistry Chemical Physics, 2022, 24, 15811-15823.	1.3	7
72	Impact of biogenic amine molecular weight and structure on surfactant adsorption at the air–water interface. Journal of Colloid and Interface Science, 2016, 463, 199-206.	5.0	6

#	Article	IF	CITATIONS
73	Contrasting impacts of mixed nonionic surfactant micelles on plant growth in the delivery of fungicide and herbicide. Journal of Colloid and Interface Science, 2022, 618, 78-87.	5.0	6
74	Adsorption of Gemini Surfactants with Partially Fluorinated Chains at Three Different Surfaces: Neutron Reflectometry Results. Langmuir, 2011, 27, 656-664.	1.6	5
75	Supramolecular architecture of a multi-component biomimetic lipid barrier formulation. Journal of Colloid and Interface Science, 2021, 587, 597-612.	5.0	5
76	α-Sulfo alkyl ester surfactants: Impact of changing the alkyl chain length on the adsorption, mixing properties and response to electrolytes of the tetradecanoate. Journal of Colloid and Interface Science, 2021, 586, 876-890.	5.0	4
77	Multivalent counterion induced multilayer adsorption at the air-water interface in dilute Aerosol-OT solutions. Journal of Colloid and Interface Science, 2021, 597, 223-232.	5.0	4
78	Investigation of the components in RFCC gasoline affecting the accuracy of potentiometric titration by GC-MS and GC-IR. Fuel Processing Technology, 2004, 85, 379-390.	3.7	3
79	Anionic surfactant – Biogenic amine interactions: The role of surfactant headgroup geometry. Journal of Colloid and Interface Science, 2016, 466, 213-219.	5.0	3
80	How do chain lengths of acyl-l-carnitines affect their surface adsorption and solution aggregation?. Journal of Colloid and Interface Science, 2022, 609, 491-502.	5.0	3
81	Antagonistic mixing in micelles of amphiphilic polyoxometalates and hexaethylene glycol monododecyl ether. Journal of Colloid and Interface Science, 2020, 578, 608-618.	5.0	2
82	Pearling and helical nanostructures of model protocell membranes. Nano Research, 2022, 15, 659.	5.8	2
83	Order-disorder transformation in liquid crystals by gas-liquid chromatography. Thermochimica Acta, 1990, 169, 301-310.	1.2	1
84	Temperature Resistant Binary SLES/Nonionic Surfactant Mixtures at the Air/Water Interface. Langmuir, 2018, 34, 9442-9452.	1.6	1
85	Simple Creams, Complex Structures. ACS Symposium Series, 2020, , 77-94.	0.5	1
86	Structural features of interfacially adsorbed acyl-L-carnitines. Journal of Colloid and Interface Science, 2022, , .	5.0	0