Kefeng Shang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6103642/publications.pdf

Version: 2024-02-01

172207 174990 3,046 101 29 52 citations h-index g-index papers 102 102 102 1920 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Degradation of toluene by tube-tube coaxial dielectric barrier discharge: power characteristics and power factor optimization. Environmental Technology (United Kingdom), 2023, 44, 897-910.	1.2	5
2	Effect of megapore particles packing on dielectric barrier discharge, O ₃ generation and benzene degradation. Plasma Science and Technology, 2022, 24, 015501.	0.7	5
3	Degradation of sulfamethoxazole (SMX) by water falling film DBD Plasma/Persulfate: Reactive species identification and their role in SMX degradation. Chemical Engineering Journal, 2022, 431, 133916.	6.6	107
4	Promoting streamer propagation, active species generation and trichloroethylene degradation using a three-electrode nanosecond pulsed sliding DBD nanosecond plasma. Journal of Cleaner Production, 2022, 332, 129998.	4.6	12
5	Streamer dynamics and charge selfâ€erasing of two counterâ€propagating plasmas in repetitively pulsed surface dielectric barrier discharge. High Voltage, 2022, 7, 730-743.	2.7	5
6	p-Nitrophenol contaminated soil remediation in a spray-type coaxial cylindrical dielectric barrier discharge plasma system. Environmental Science and Pollution Research, 2022, 29, 58110-58120.	2.7	5
7	Characteristic studies on positive and negative streamers of double-sided pulsed surface dielectric barrier discharge. Plasma Science and Technology, 2022, 24, 044005.	0.7	2
8	Characteristics of three-electrode pulsed surface dielectric barrier discharge: streamer-to-spark transition and hydrodynamic expansion. Journal Physics D: Applied Physics, 2022, 55, 265202.	1.3	7
9	Promoting volatile organic compounds removal by a magnetically assisted nanosecond pulsed gearâ€cylinder dielectric barrier discharge. Plasma Processes and Polymers, 2022, 19, .	1.6	3
10	Experimental and simulated investigation of microdischarge characteristics in a pin-to-pin dielectric barrier discharge (DBD) reactor. Plasma Science and Technology, 2022, 24, 105402.	0.7	1
11	Generation Characteristics of Long-Lived Active Species in a Water Falling Film DBD Reactor. Plasma Chemistry and Plasma Processing, 2021, 41, 477-491.	1.1	20
12	Physical and chemical properties of a magnetic-assisted DC superimposed nanosecond-pulsed streamer discharge plasma. Journal Physics D: Applied Physics, 2021, 54, 245203.	1.3	11
13	Plasma-assisted catalysis decomposition of BPA over graphene-CdS nanocomposites in pulsed gas-liquid hybrid discharge: Photocorrosion inhibition and synergistic mechanism analysis. Chemical Engineering Journal, 2021, 412, 128627.	6.6	61
14	Successive treatment of benzene and derived byproducts by a novel plasma catalysis-adsorption process. Journal of Environmental Chemical Engineering, 2021, 9, 105767.	3.3	40
15	CO2 conversion promoted by potassium intercalated g-C3N4 catalyst in DBD plasma system. Chemical Engineering Journal, 2021, 417, 129283.	6.6	31
16	The post plasma-catalytic decomposition of toluene over K-modified OMS-2 catalysts at ambient temperature: Effect of K+ loading amount and reaction mechanism. Journal of Colloid and Interface Science, 2021, 598, 519-529.	5.0	25
17	Characterization of highly effective plasma-treated g-C3N4 and application to the photocatalytic H2O2 production. Chemosphere, 2020, 241, 124927.	4.2	45
18	Degradation of trans-ferulic acid in aqueous solution by a water falling film DBD reactor: Degradation performance, response surface methodology, reactive species analysis and toxicity evaluation. Separation and Purification Technology, 2020, 235, 116226.	3.9	17

#	Article	IF	Citations
19	Characterization of a novel volume-surface DBD reactor: discharge characteristics, ozone production and benzene degradation. Journal Physics D: Applied Physics, 2020, 53, 065201.	1.3	50
20	Investigation of toluene removal by DC discharge with MgO/NiO/Ni cathode under different operating parameters. Journal Physics D: Applied Physics, 2020, 53, 085201.	1.3	2
21	Degradation of toluene by pulse-modulated multistage DBD plasma: Key parameters optimization through response surface methodology (RSM) and degradation pathway analysis. Journal of Hazardous Materials, 2020, 393, 122365.	6.5	71
22	Evolution of three-electrode pulsed surface dielectric barrier discharge: primary streamer, transitional streamer and secondary reverse streamer. Plasma Sources Science and Technology, 2020, 29, 035018.	1.3	23
23	Combined steam and CO2 reforming of CH4 for syngas production in a gliding arc discharge plasma. Journal of CO2 Utilization, 2020, 37, 248-259.	3.3	45
24	Enhanced catalytic performance of CoO -CeO2 for synergetic degradation of toluene in multistage sliding plasma system through response surface methodology (RSM). Applied Catalysis B: Environmental, 2019, 259, 118061.	10.8	132
25	Ice-breaking by three-electrode pulsed surface dielectric barrier discharge: breakdown mode transition. Journal Physics D: Applied Physics, 2019, 52, 50LT01.	1.3	8
26	Enhanced catalytic performance of graphene-TiO2 nanocomposites for synergetic degradation of fluoroquinolone antibiotic in pulsed discharge plasma system. Applied Catalysis B: Environmental, 2019, 248, 552-566.	10.8	199
27	DC discharge with high secondary electron emission oxide cathode: Effects of gas pressure and oxide cathode structure. Vacuum, 2019, 166, 114-122.	1.6	4
28	Pulsed discharge plasma induced WO3 catalysis for synergetic degradation of ciprofloxacin in water: Synergetic mechanism and degradation pathway. Chemosphere, 2019, 230, 190-200.	4.2	76
29	Synergistic degradation of trans-ferulic acid by water falling film DBD plasma coupled with cobalt oxyhydroxide: Performance and mechanisms. Chemical Engineering Journal, 2019, 372, 321-331.	6.6	46
30	Evaluation on a double-chamber gas-liquid phase discharge reactor for benzene degradation. Plasma Science and Technology, 2019, 21, 075502.	0.7	6
31	Pulsed discharge plasma assisted with graphene-WO3 nanocomposites for synergistic degradation of antibiotic enrofloxacin in water. Chemical Engineering Journal, 2019, 372, 226-240.	6.6	91
32	Plasma-catalytic destruction of xylene over Ag-Mn mixed oxides in a pulsed sliding discharge reactor. Journal of Hazardous Materials, 2019, 369, 611-620.	6.5	121
33	Degradation of antibiotic chloramphenicol in water by pulsed discharge plasma combined with TiO2/WO3 composites: mechanism and degradation pathway. Journal of Hazardous Materials, 2019, 371, 666-676.	6.5	109
34	Degradation of flumequine in water by pulsed discharge plasma coupled with reduced graphene oxide/TiO2 nanocomposites. Separation and Purification Technology, 2019, 218, 206-216.	3.9	39
35	Experimental and numerical studies of primary and secondary streamers in a pulsed surface dielectric barrier discharge. Journal Physics D: Applied Physics, 2019, 52, 325202.	1.3	26
36	Classification and uniformity optimization of mesh-plate DBD and its application in polypropylene modification. Plasma Science and Technology, 2019, 21, 054006.	0.7	12

#	Article	IF	CITATIONS
37	Dielectric barrier discharge plasma assisted CO ₂ conversion: understanding the effects of reactor design and operating parameters. Journal Physics D: Applied Physics, 2019, 52, 224003.	1.3	20
38	Degradation of p-nitrophenol by DBD plasma/Fe2+/persulfate oxidation process. Separation and Purification Technology, 2019, 218, 106-112.	3.9	136
39	An improved corona discharge ignited by oxide cathodes with high secondary electron emission for toluene degradation. Chemical Engineering Journal, 2019, 362, 339-348.	6.6	46
40	Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions. Plasma Science and Technology, 2019, 21, 025501.	0.7	10
41	Hybrid electric discharge plasma technologies for water decontamination: a short review. Plasma Science and Technology, 2019, 21, 043001.	0.7	111
42	Improved Performance for Toluene Abatement in a Continuous-Flow Pulsed Sliding Discharge Reactor Based on Three-Electrode Configuration. Plasma Chemistry and Plasma Processing, 2019, 39, 227-240.	1.1	18
43	The structure optimization of gas-phase surface discharge and its application for dye degradation. Plasma Science and Technology, 2018, 20, 054018.	0.7	1
44	A comparative study on the activity of TiO ₂ in pulsed plasma under different discharge conditions. Plasma Science and Technology, 2018, 20, 054009.	0.7	6
45	Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	12
46	CO ₂ conversion in non-thermal plasma and plasma/g-C ₃ N ₄ catalyst hybrid processes. Journal Physics D: Applied Physics, 2018, 51, 094001.	1.3	28
47	Synergetic effect of TiO2 and Fe3+ as co-catalysts for enhanced phenol degradation in pulsed discharge system. Applied Catalysis B: Environmental, 2018, 221, 521-529.	10.8	83
48	Synergistic degradation of trans-ferulic acid in aqueous solution by dielectric barrier discharge plasma combined with ozone. Environmental Science and Pollution Research, 2018, 25, 35479-35491.	2.7	9
49	Characteristics of a corona discharge ignited by a MgO/NiO/Ni sandwich cathode with high secondary electron emission for VOC degradation. Journal Physics D: Applied Physics, 2018, 51, 435201.	1.3	5
50	Reactive species distribution characteristics and toluene destruction in the three-electrode DBD reactor energized by different pulsed modes. Chemical Engineering Journal, 2018, 350, 12-19.	6.6	101
51	Dry reforming of CH4CO2 in AC rotating gliding arc discharge: Effect of electrode structure and gas parameters. International Journal of Hydrogen Energy, 2018, 43, 13098-13109.	3.8	25
52	Diagnostics of Plasma Behavior and TiO2 Properties Based on DBD/TiO2 Hybrid System. Plasma Chemistry and Plasma Processing, 2018, 38, 1239-1258.	1.1	17
53	Effect of Persulfate on the Degradation of Acid Orange 7 (AO7) by Dielectric Barrier Discharge Plasma. Topics in Catalysis, 2017, 60, 973-979.	1.3	13
54	Post Plasma-Catalysis of Low Concentration VOC Over Alumina-Supported Silver Catalysts in a Surface/Packed-Bed Hybrid Discharge Reactor. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	35

#	Article	IF	Citations
55	Non-Thermal Plasma-Assisted Catalytic Dry Reforming of Methane and Carbon Dioxide Over G-C3N4-Based Catalyst. Topics in Catalysis, 2017, 60, 855-868.	1.3	30
56	Activation of peroxydisulfate by gas–liquid pulsed discharge plasma to enhance the degradation of p-nitrophenol. Plasma Science and Technology, 2017, 19, 064017.	0.7	17
57	Discharge and optical characterizations of nanosecond pulse sliding dielectric barrier discharge plasma for volatile organic compound degradation. Journal Physics D: Applied Physics, 2017, 50, 155206.	1.3	21
58	Synergetic degradation of Acid Orange 7 (AO7) dye by DBD plasma and persulfate. Chemical Engineering Journal, 2017, 311, 378-384.	6.6	191
59	Dry reforming of CO2CH4 assisted by high-frequency AC gliding arc discharge: Electrical characteristics and the effects of different parameters. International Journal of Hydrogen Energy, 2017, 42, 22776-22785.	3.8	25
60	Morphological Image Analysis of Surface Dielectric Barrier Discharge at Atmospheric Air. IEEE Transactions on Plasma Science, 2017, 45, 2988-2993.	0.6	2
61	Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power. Plasma Science and Technology, 2016, 18, 254-258.	0.7	11
62	Evaluating the generation efficiency of hydrogen peroxide in water by pulsed discharge over water surface and underwater bubbling pulsed discharge. Japanese Journal of Applied Physics, 2016, 55, 01AB02.	0.8	21
63	Evaluation of Energy-Conversion Efficiency of Multineedle-to-Plate Corona-DBD Plasma for Organic Degradation in Soil. IEEE Transactions on Plasma Science, 2016, , 1-8.	0.6	3
64	Degradation of benzene by bipolar pulsed series surface/packed-bed discharge reactor over MnO 2 $\hat{a} \in \text{``TiO 2/zeolite catalyst. Chemical Engineering Journal, 2016, 293, 216-224.}$	6.6	38
65	Enhanced Degradation of Benzene in Surface/Packed-Bed Hybrid Discharge System: Optimization of the Reactor Structure and Electrical Parameters. IEEE Transactions on Plasma Science, 2016, 44, 657-664.	0.6	9
66	Oxidation characteristics of mixed NO and HgO in coal-fired flue gas using active species injection generated by surface discharge plasma. Chemical Engineering Journal, 2016, 288, 298-304.	6.6	24
67	Evaluation of discharge uniformity and area in surface dielectric barrier discharge at atmospheric pressure. Vacuum, 2016, 123, 49-53.	1.6	9
68	Plasma-catalytic degradation of benzene over Ag–Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas. Applied Catalysis B: Environmental, 2016, 184, 355-363.	10.8	124
69	Streamer inhibition characteristics of surface dielectric barrier discharge in different electrode configurations., 2015,,.		0
70	Plasma-catalytic destruction of benzene in a hybrid surface/packed-bed discharge over AG <inf>x</inf> CE <inf>1−x</inf> /γ-AL <inf>2</inf> O&catalyst., 2015,,.	<inf>3</inf>	<g/inf>
71	Ozonation of p-Nitrophenol Adsorbed on Activated Carbon Fiber (ACF) and the Change of Textural and Chemical Characteristics of ACF. Ozone: Science and Engineering, 2015, 37, 178-185.	1.4	6
72	Combination of pulsed corona discharge plasma and gamma-Al 2 O 3 -supported catalysts for polycyclic aromatic hydrocarbon removal in soil. Separation and Purification Technology, 2015, 156, 766-771.	3.9	10

#	Article	IF	CITATIONS
73	Electrical Characteristics of Pulsed-Discharge Plasma for Decoloration of Dyes in Water. IEEE Transactions on Plasma Science, 2015, 43, 580-586.	0.6	9
74	Enhanced biodegradability of coking wastewater by gas phase dielectric barrier discharge plasma. Separation and Purification Technology, 2015, 154, 359-365.	3.9	16
75	Electrical Characteristics of Pulsed Corona Discharge Plasmas in Chitosan Solution. Plasma Science and Technology, 2014, 16, 128-133.	0.7	15
76	Performance of Dielectric Barrier Discharge Reactors on Elemental Mercury Oxidation in the Coal-Fired Flue Gas. Plasma Science and Technology, 2014, 16, 155-160.	0.7	4
77	Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure. Plasma Science and Technology, 2014, 16, 123-127.	0.7	5
78	Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas. Journal of Hazardous Materials, 2014, 268, 237-245.	6.5	38
79	Innovative Approach for Benzene Degradation Using Hybrid Surface/Packed-Bed Discharge Plasmas. Environmental Science & Technology, 2013, 47, 9898-9903.	4.6	88
80	Oxidation efficiency of elemental mercury in two DBD plasma reactors. Journal of Physics: Conference Series, 2013, 418, 012118.	0.3	5
81	Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation. Journal of Hazardous Materials, 2013, 262, 387-393.	6.5	53
82	Degradation of methyl orange waste water by electrochemical oxidation method. Journal of Physics: Conference Series, 2013, 418, 012134.	0.3	5
83	Low temperature air plasma jet generated by syringe needle–ring electrodes dielectric barrier discharge at atmospheric pressure. Thin Solid Films, 2013, 548, 470-474.	0.8	8
84	Improved phenol decomposition and simultaneous regeneration of granular activated carbon by the addition of a titanium dioxide catalyst under a dielectric barrier discharge plasma. Carbon, 2013, 53, 380-390.	5.4	50
85	Electrical and Spectral Characteristics of a Low-Temperature Argon–Oxygen Plasma Jet With Syringe Needle-Ring Electrodes. IEEE Transactions on Plasma Science, 2013, 41, 545-552.	0.6	8
86	Detection of hydroxyl radicals during regeneration of granular activated carbon in dielectric barrier discharge plasma system. Journal of Physics: Conference Series, 2013, 418, 012104.	0.3	7
87	Influence of power supply on the generation of ozone and degradation of phenol in a surface discharge reactor. Journal of Physics: Conference Series, 2013, 418, 012131.	0.3	5
88	Optimization of discharge types and electrode structure in a cylinder discharge reactor with saw-wheel array electrodes. Journal of Physics: Conference Series, 2013, 418, 012098.	0.3	2
89	Evaluation of matching between a pulsed-power and corona discharge reactor containing different thickness of soil. Journal of Physics: Conference Series, 2013, 418, 012136.	0.3	3
90	Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor. Journal of Physics: Conference Series, 2013, 418, 012128.	0.3	4

#	Article	IF	CITATIONS
91	Study on the factors influencing phenol degradation in water by dielectric barrier discharge (DBD). Journal of Physics: Conference Series, 2013, 418, 012129.	0.3	8
92	Oxidation of ammonium sulfite in aqueous solutions using ozone technology. Journal of Physics: Conference Series, 2013, 418, 012130.	0.3	4
93	Trichel Pulse Characteristics in Negative dc Corona Discharge. , 2011, , .		5
94	Effect of Electrode Configuration and Corona Polarity on NO Removal by Pulse Corona Plasma. , 2010, , .		2
95	Study on Selection and Training of the Strains High-Effectively Degrading PCBs. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
96	Degradation of Phenol in Water with Suspended TiO2 by Pulsed Streamer Discharge. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
97	Destruction of Toluene by dc Corona Discharge Reactor with Ultra-Thin Razor-to-Plate Type Electrode. , 2009, , .		0
98	Diagnosis of electron temperature in Ar/O2 mixed gas and destruction of toluene/benzene by positive dc discharge plasma. Journal of Electrostatics, 2009, 67, 746-750.	1.0	8
99	Simultaneous Removal of SO2/NOx by Corona Disharge Plasma. , 2009, , .		1
100	Abatement of NOx with Propene Activated by Corona Plasmas. , 2009, , .		1
101	Enhancement of NOxabatement by advancing initiation of C3H6oxidation chemistry with a corona radical shower. Plasma Sources Science and Technology, 2007, 16, 104-109.	1.3	12