Nathan C Rockwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6103565/publications.pdf

Version: 2024-02-01

58 papers 4,894 citations

36 h-index 58 g-index

58 all docs 58 docs citations

58 times ranked 3528 citing authors

#	Article	IF	CITATIONS
1	Protein–chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes. Photochemical and Photobiological Sciences, 2022, 21, 471-491.	1.6	7
2	Crystal structure of a far-red–sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
3	Natural diversity provides a broad spectrum of cyanobacteriochrome-based diguanylate cyclases. Plant Physiology, 2021, 187, 632-645.	2.3	11
4	Bilin-dependent regulation of chlorophyll biosynthesis by GUN4. Proceedings of the National Academy of Sciences of the United States of America, $2021, 118, \ldots$	3.3	18
5	Phytochrome evolution in 3D: deletion, duplication, and diversification. New Phytologist, 2020, 225, 2283-2300.	3.5	77
6	A far-red cyanobacteriochrome lineage specific for verdins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27962-27970.	3.3	20
7	Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15573-15580.	3.3	16
8	Correlating structural and photochemical heterogeneity in cyanobacteriochrome NpR6012g4. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4387-4392.	3.3	65
9	Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells. Journal of Biological Chemistry, 2018, 293, 8473-8483.	1.6	59
10	Phototaxis in a wild isolate of the cyanobacterium <i>Synechococcus elongatus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12378-E12387.	3.3	61
11	Protonation Heterogeneity Modulates the Ultrafast Photocycle Initiation Dynamics of Phytochrome Cph1. Journal of Physical Chemistry Letters, 2018, 9, 3454-3462.	2.1	24
12	The phycocyanobilin chromophore of streptophyte algal phytochromes is synthesized by HY2. New Phytologist, 2017, 214, 1145-1157.	3.5	27
13	There and Back Again: Loss and Reacquisition of Twoâ€Cys Photocycles in Cyanobacteriochromes. Photochemistry and Photobiology, 2017, 93, 741-754.	1.3	31
14	Algal light sensing and photoacclimation in aquatic environments. Plant, Cell and Environment, 2017, 40, 2558-2570.	2.8	46
15	Phytochrome diversification in cyanobacteria and eukaryotic algae. Current Opinion in Plant Biology, 2017, 37, 87-93.	3.5	63
16	Ferredoxin-dependent bilin reductases in eukaryotic algae: Ubiquity and diversity. Journal of Plant Physiology, 2017, 217, 57-67.	1.6	24
17	Light-Regulated Synthesis of Cyclic-di-GMP by a Bidomain Construct of the Cyanobacteriochrome Tlr0924 (SesA) without Stable Dimerization. Biochemistry, 2017, 56, 6145-6154.	1.2	15
18	Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue. Biochemistry, 2016, 55, 6981-6995.	1.2	34

#	Article	IF	CITATIONS
19	Identification of the Plant Ribokinase and Discovery of a Role for Arabidopsis Ribokinase in Nucleoside Metabolism. Journal of Biological Chemistry, 2016, 291, 22572-22582.	1.6	20
20	1H, 13C, and 15N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state. Biomolecular NMR Assignments, 2016, 10, 157-161.	0.4	6
21	Identification of Cyanobacteriochromes Detecting Far-Red Light. Biochemistry, 2016, 55, 3907-3919.	1.2	71
22	1H, 15N, and 13C chemical shift assignments of cyanobacteriochrome NpR6012g4 in the red-absorbing dark state. Biomolecular NMR Assignments, 2016, 10, 139-142.	0.4	6
23	Identification of DXCF cyanobacteriochrome lineages with predictable photocycles. Photochemical and Photobiological Sciences, 2015, 14, 929-941.	1.6	50
24	Conservation and Diversity in the Primary Forward Photodynamics of Red/Green Cyanobacteriochromes. Biochemistry, 2015, 54, 1028-1042.	1.2	32
25	Characterization of Red/Green Cyanobacteriochrome NpR6012g4 by Solution Nuclear Magnetic Resonance Spectroscopy: A Hydrophobic Pocket for the C15- <i>E,anti</i> Chromophore in the Photoproduct. Biochemistry, 2015, 54, 3772-3783.	1.2	39
26	Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. Nature Methods, 2015, 12, 852-858.	9.0	85
27	Characterization of Red/Green Cyanobacteriochrome NpR6012g4 by Solution Nuclear Magnetic Resonance Spectroscopy: A Protonated Bilin Ring System in Both Photostates. Biochemistry, 2015, 54, 2581-2600.	1.2	40
28	NpR3784 is the prototype for a distinctive group of red/green cyanobacteriochromes using alternative Phe residues for photoproduct tuning. Photochemical and Photobiological Sciences, 2015, 14, 258-269.	1.6	50
29	Primary endosymbiosis and the evolution of light and oxygen sensing in photosynthetic eukaryotes. Frontiers in Ecology and Evolution, 2014, 2, .	1.1	45
30	Eukaryotic algal phytochromes span the visible spectrum. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3871-3876.	3.3	153
31	PHYTOCHROME C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10037-10044.	3.3	175
32	Marine algae and land plants share conserved phytochrome signaling systems. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15827-15832.	3.3	108
33	Photoconversion changes bilin chromophore conjugation and protein secondary structure in the violet/orange cyanobacteriochrome NpF2163g3. Photochemical and Photobiological Sciences, 2014, 13, 951-962.	1.6	32
34	Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science, 2014, 345, 1312-1317.	6.0	332
35	Conserved Phenylalanine Residues Are Required for Blue-Shifting of Cyanobacteriochrome Photoproducts. Biochemistry, 2014, 53, 3118-3130.	1.2	74
36	Optically Guided Photoactivity: Coordinating Tautomerization, Photoisomerization, Inhomogeneity, and Reactive Intermediates within the RcaE Cyanobacteriochrome. Journal of Physical Chemistry Letters, 2014, 5, 1527-1533.	2.1	10

#	Article	IF	Citations
37	Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium "Chlorochromatium aggregatum― Genome Biology, 2013, 14, R127.	13.9	40
38	Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4974-4979.	3.3	147
39	Reactive Ground-State Pathways Are Not Ubiquitous in Red/Green Cyanobacteriochromes. Journal of Physical Chemistry B, 2013, 117, 11229-11238.	1.2	31
40	Retrograde bilin signaling enables <i>Chlamydomonas</i> greening and phototrophic survival. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3621-3626.	3.3	107
41	Cyanobacteriochromes in full color and three dimensions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 806-807.	3.3	28
42	Red/Green Cyanobacteriochromes: Sensors of Color and Power. Biochemistry, 2012, 51, 9667-9677.	1.2	133
43	Femtosecond Photodynamics of the Red/Green Cyanobacteriochrome NpR6012g4 from <i>Nostoc punctiforme</i> . 1. Forward Dynamics. Biochemistry, 2012, 51, 608-618.	1.2	81
44	Phycoviolobilin Formation and Spectral Tuning in the DXCF Cyanobacteriochrome Subfamily. Biochemistry, 2012, 51, 1449-1463.	1.2	129
45	Mechanistic Insight into the Photosensory Versatility of DXCF Cyanobacteriochromes. Biochemistry, 2012, 51, 3576-3585.	1.2	87
46	Femtosecond Photodynamics of the Red/Green Cyanobacteriochrome NpR6012g4 from <i>Nostoc punctiforme</i> . 2. Reverse Dynamics. Biochemistry, 2012, 51, 619-630.	1.2	72
47	Second-Chance Forward Isomerization Dynamics of the Red/Green Cyanobacteriochrome NpR6012g4 from Nostoc punctiforme. Journal of the American Chemical Society, 2012, 134, 130-133.	6.6	58
48	Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11854-11859.	3.3	182
49	A Brief History of Phytochromes. ChemPhysChem, 2010, 11, 1172-1180.	1.0	320
50	Distinct classes of red/far-red photochemistry within the phytochrome superfamily. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6123-6127.	3.3	127
51	ABC Transporter Pdr10 Regulates the Membrane Microenvironment of Pdr12 in Saccharomyces cerevisiae. Journal of Membrane Biology, 2009, 229, 27-52.	1.0	41
52	A Second Conserved GAF Domain Cysteine Is Required for the Blue/Green Photoreversibility of Cyanobacteriochrome Tlr0924 from <i>Thermosynechococcus elongatus</i> . Biochemistry, 2008, 47, 7304-7316.	1.2	119
53	Membrane-active Compounds Activate the Transcription Factors Pdr1 and Pdr3 Connecting Pleiotropic Drug Resistance and Membrane Lipid Homeostasis in <i>Saccharomyces cerevisiae</i> Biology of the Cell, 2007, 18, 4932-4944.	0.9	47
54	Insight into the Radical Mechanism of Phycocyanobilinâ^'Ferredoxin Oxidoreductase (PcyA) Revealed by X-ray Crystallography and Biochemical Measurementsâ€. Biochemistry, 2007, 46, 1484-1494.	1.2	47

#	Article	IF	CITATIONS
55	Flexible mapping of homology onto structure with Homolmapper. BMC Bioinformatics, 2007, 8, 123.	1.2	20
56	PHYTOCHROME STRUCTURE AND SIGNALING MECHANISMS. Annual Review of Plant Biology, 2006, 57, 837-858.	8.6	950
57	The Structure of Phytochrome: A Picture Is Worth a Thousand Spectra. Plant Cell, 2006, 18, 4-14.	3.1	100
58	Multiple Roles of a Conserved GAF Domain Tyrosine Residue in Cyanobacterial and Plant Phytochromesâ€. Biochemistry, 2005, 44, 15203-15215.	1.2	89