
Laurent Yvan-Charvet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6103478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Le métabolisme protège-t-il notre système immunitaire�. Medecine/Sciences, 2022, 38, 520-523.	0.0	Ο
2	T cell cholesterol efflux suppresses apoptosis and senescence and increases atherosclerosis in middle aged mice. Nature Communications, 2022, 13, .	5.8	21
3	Lysosomal Acid Lipase Drives Adipocyte Cholesterol Homeostasis and Modulates Lipid Storage in Obesity, Independent of Autophagy. Diabetes, 2021, 70, 76-90.	0.3	9
4	Metabolic Inflammation in Obesity—At the Crossroads between Fatty Acid and Cholesterol Metabolism. Molecular Nutrition and Food Research, 2021, 65, e1900482.	1.5	19
5	Arterial Delivery of VEGF-C Stabilizes Atherosclerotic Lesions. Circulation Research, 2021, 128, 284-286.	2.0	12
6	Mitochondria orchestrate macrophage effector functions in atherosclerosis. Molecular Aspects of Medicine, 2021, 77, 100922.	2.7	26
7	Heterogeneous NLRP3 inflammasome signature in circulating myeloid cells as a biomarker of COVID-19 severity. Blood Advances, 2021, 5, 1523-1534.	2.5	36
8	Single-cell analysis of human skin identifies CD14+ type 3 dendritic cells co-producing IL1B and IL23A in psoriasis. Journal of Experimental Medicine, 2021, 218, .	4.2	68
9	Macrophage ontogeny and functional diversity in cardiometabolic diseases. Seminars in Cell and Developmental Biology, 2021, 119, 119-129.	2.3	2
10	A subset of Kupffer cells regulates metabolism through the expression of CD36. Immunity, 2021, 54, 2101-2116.e6.	6.6	99
11	LDL-cholesterol drives reversible myelomonocytic skewing in human bone marrow. European Heart Journal, 2021, 42, 4321-4323.	1.0	3
12	Brown adipose tissue monocytes support tissue expansion. Nature Communications, 2021, 12, 5255.	5.8	23
13	Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation. Nature Metabolism, 2021, 3, 1313-1326.	5.1	31
14	Regulatory TÂcell differentiation is controlled by αKG-induced alterations in mitochondrial metabolism and lipid homeostasis. Cell Reports, 2021, 37, 109911.	2.9	39
15	Liver X receptors are required for thymic resilience and T cell output. Journal of Experimental Medicine, 2020, 217, .	4.2	20
16	Impaired Kupffer Cell Self-Renewal Alters the Liver Response to Lipid Overload during Non-alcoholic Steatohepatitis. Immunity, 2020, 53, 627-640.e5.	6.6	185
17	ABCA1 Exerts Tumor-Suppressor Function in Myeloproliferative Neoplasms. Cell Reports, 2020, 30, 3397-3410.e5.	2.9	18
18	Interplay between Clonal Hematopoiesis of Indeterminate Potential and Metabolism. Trends in Endocrinology and Metabolism, 2020, 31, 525-535.	3.1	23

LAURENT YVAN-CHARVET

#	Article	IF	CITATIONS
19	Metabolic Reprogramming of Macrophages in Atherosclerosis: Is It All about Cholesterol?. Journal of Lipid and Atherosclerosis, 2020, 9, 231.	1.1	15
20	Granulopoiesis and Neutrophil Homeostasis: A Metabolic, Daily Balancing Act. Trends in Immunology, 2019, 40, 598-612.	2.9	67
21	Immunometabolic function of cholesterol in cardiovascular disease and beyond. Cardiovascular Research, 2019, 115, 1393-1407.	1.8	52
22	Immunometabolism of Phagocytes and Relationships to Cardiac Repair. Frontiers in Cardiovascular Medicine, 2019, 6, 42.	1.1	30
23	Macrophage Origin, Metabolic Reprogramming and IL-1 Signaling: Promises and Pitfalls in Lung Cancer. Cancers, 2019, 11, 298.	1.7	10
24	Efferocytosis Fuels Requirements of Fatty Acid Oxidation and the Electron Transport Chain to Polarize Macrophages for Tissue Repair. Cell Metabolism, 2019, 29, 443-456.e5.	7.2	233
25	Cholesterol Mass Efflux Capacity, Incident Cardiovascular Disease, and Progression of Carotid Plaque. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 89-96.	1.1	91
26	Lysosomal Cholesterol Hydrolysis Couples Efferocytosis to Anti-Inflammatory Oxysterol Production. Circulation Research, 2018, 122, 1369-1384.	2.0	88
27	Poststatin era in atherosclerosis management. Current Opinion in Lipidology, 2018, 29, 246-258.	1.2	7
28	Is defective cholesterol efflux an integral inflammatory component in myelopoiesis-driven cardiovascular diseases?. European Heart Journal, 2018, 39, 2168-2171.	1.0	8
29	Plasma metabolite profiles, cellular cholesterol efflux, and non-traditional cardiovascular risk in patients with CKD. Journal of Molecular and Cellular Cardiology, 2017, 112, 114-122.	0.9	31
30	Cholesterol Accumulation in Dendritic Cells Links the Inflammasome to Acquired Immunity. Cell Metabolism, 2017, 25, 1294-1304.e6.	7.2	153
31	Disruption of Glut1 in Hematopoietic Stem Cells Prevents Myelopoiesis and Enhanced Glucose Flux in Atheromatous Plaques of <i>ApoE</i> ^{â^'/â^'} Mice. Circulation Research, 2016, 118, 1062-1077.	2.0	93
32	HIF-2α in Resting Macrophages Tempers Mitochondrial Reactive Oxygen Species To Selectively Repress MARCO-Dependent Phagocytosis. Journal of Immunology, 2016, 197, 3639-3649.	0.4	21
33	The modern interleukin-1 superfamily: Divergent roles in obesity. Seminars in Immunology, 2016, 28, 441-449.	2.7	26
34	Maintenance of Macrophage Redox Status by ChREBP Limits Inflammation and Apoptosis and Protects against Advanced Atherosclerotic Lesion Formation. Cell Reports, 2015, 13, 132-144.	2.9	32
35	Cholesterol, inflammation and innate immunity. Nature Reviews Immunology, 2015, 15, 104-116.	10.6	1,020
36	Adipose Modulation of ABCG1 Uncovers an Intimate Link Between Sphingomyelin and Triglyceride Storage. Diabetes, 2015, 64, 689-692.	0.3	11

#	Article	IF	CITATIONS
37	Understanding macrophage diversity at the ontogenic and transcriptomic levels. Immunological Reviews, 2014, 262, 85-95.	2.8	37
38	Deficiency of ATP-Binding Cassette Transporter B6 in Megakaryocyte Progenitors Accelerates Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 751-758.	1.1	40
39	ATP-Binding Cassette Transporters, Atherosclerosis, and Inflammation. Circulation Research, 2014, 114, 157-170.	2.0	206
40	Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nature Medicine, 2013, 19, 586-594.	15.2	162
41	Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Macrophages Increases Inflammation and Accelerates Atherosclerosis in Mice. Circulation Research, 2013, 112, 1456-1465.	2.0	253
42	Mild Renal Dysfunction and Metabolites Tied to Low HDL Cholesterol Are Associated With Monocytosis and Atherosclerosis. Circulation, 2013, 127, 988-996.	1.6	51
43	HDL and Clut1 inhibition reverse a hypermetabolic state in mouse models of myeloproliferative disorders. Journal of Experimental Medicine, 2013, 210, 339-353.	4.2	41
44	Liver X Receptor α-Dependent Iron Handling in M2 Macrophages. Circulation Research, 2013, 113, 1182-1185.	2.0	11
45	Cholesterol Efflux. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2547-2552.	1.1	63
46	Anti-atherogenic mechanisms of high density lipoprotein: Effects on myeloid cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 513-521.	1.2	71
47	Regulation of Hematopoietic Stem and Progenitor Cell Mobilization by Cholesterol Efflux Pathways. Cell Stem Cell, 2012, 11, 195-206.	5.2	217
48	Cholesterol Efflux and Atheroprotection. Circulation, 2012, 125, 1905-1919.	1.6	772
49	Role of adipose tissue renin–angiotensin system in metabolic and inflammatory diseases associated with obesity. Kidney International, 2011, 79, 162-168.	2.6	178
50	<i>Cdkn2a</i> Is an Atherosclerosis Modifier Locus That Regulates Monocyte/Macrophage Proliferation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2483-2492.	1.1	60
51	ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. Journal of Clinical Investigation, 2011, 121, 4138-4149.	3.9	431
52	ATP-Binding Cassette Transporter G1 and High-Density Lipoprotein Promote Endothelial NO Synthesis Through a Decrease in the Interaction of Caveolin-1 and Endothelial NO Synthase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2219-2225.	1.1	89
53	Cholesterol Efflux Potential and Antiinflammatory Properties of High-Density Lipoprotein After Treatment With Niacin or Anacetrapib. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1430-1438.	1.1	221
54	Role of HDL, ABCA1, and ABCG1 Transporters in Cholesterol Efflux and Immune Responses. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 139-143.	1.1	543

LAURENT YVAN-CHARVET

#	Article	IF	CITATIONS
55	ABCA1 and ABCG1 Protect Against Oxidative Stress–Induced Macrophage Apoptosis During Efferocytosis. Circulation Research, 2010, 106, 1861-1869.	2.0	160
56	ATP-Binding Cassette Transporters and HDL Suppress Hematopoietic Stem Cell Proliferation. Science, 2010, 328, 1689-1693.	6.0	624
57	Deficiency of Angiotensin Type 2 Receptor Rescues Obesity But Not Hypertension Induced by Overexpression of Angiotensinogen in Adipose Tissue. Endocrinology, 2009, 150, 1421-1428.	1.4	64
58	HDL, ABC Transporters, and Cholesterol Efflux: Implications for the Treatment of Atherosclerosis. Cell Metabolism, 2008, 7, 365-375.	7.2	483
59	Increased Inflammatory Gene Expression in ABC Transporter–Deficient Macrophages. Circulation, 2008, 118, 1837-1847.	1.6	392
60	ATPâ€binding cassette transporters G1 and G4 mediate cholesterol and desmosterol efflux to HDL and regulate sterol accumulation in the brain. FASEB Journal, 2008, 22, 1073-1082.	0.2	160
61	SR-BI inhibits ABCG1-stimulated net cholesterol efflux from cells to plasma HDL. Journal of Lipid Research, 2008, 49, 107-114.	2.0	46
62	ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet. Journal of Clinical Investigation, 2008, 118, 3701-3713.	3.9	202
63	In Vivo Evidence for a Role of Adipose Tissue SR-BI in the Nutritional and Hormonal Regulation of Adiposity and Cholesterol Homeostasis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1340-1345.	1.1	50
64	High-density lipoprotein protects macrophages from oxidized low-density lipoprotein-induced apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15093-15098.	3.3	243
65	Pivotal Advance: Macrophages become resistant to cholesterol-induced death after phagocytosis of apoptotic cells. Journal of Leukocyte Biology, 2007, 82, 1040-1050.	1.5	63
66	Inhibition of Cholesteryl Ester Transfer Protein by Torcetrapib Modestly Increases Macrophage Cholesterol Efflux to HDL. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1132-1138.	1.1	190
67	The Failure of Torcetrapib. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 257-260.	1.1	279
68	Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. Journal of Clinical Investigation, 2007, 117, 3900-8.	3.9	424
69	Gender-related response of lipid metabolism to dietary fatty acids in the hamster. British Journal of Nutrition, 2006, 95, 709-720.	1.2	15
70	Prevention of Adipose Tissue Depletion during Food Deprivation in Angiotensin Type 2 Receptor-Deficient Mice. Endocrinology, 2006, 147, 5078-5086.	1.4	19
71	Decreased Atherosclerosis in Low-Density Lipoprotein Receptor Knockout Mice Transplanted With Abcg1 â~'/â~' Bone Marrow. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2308-2315.	1.1	156
72	Effet anti-obésité des CLAÂ: mythe ou réalitéÂ?. Oleagineux Corps Gras Lipides, 2005, 12, 45-50.	0.2	0

#	Article	IF	CITATIONS
73	Insulin and Angiotensin II Induce the Translocation of Scavenger Receptor Class B, Type I from Intracellular Sites to the Plasma Membrane of Adipocytes. Journal of Biological Chemistry, 2005, 280, 33536-33540.	1.6	43
74	Deletion of the Angiotensin Type 2 Receptor (AT2R) Reduces Adipose Cell Size and Protects From Diet-Induced Obesity and Insulin Resistance. Diabetes, 2005, 54, 991-999.	0.3	183