Tarek H Ghaddar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6103261/publications.pdf

Version: 2024-02-01

44 papers 1,808 citations

304743 22 h-index 265206 42 g-index

44 all docs

44 docs citations

44 times ranked 2524 citing authors

#	Article	IF	CITATIONS
1	Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomedicine and Pharmacotherapy, 2022, 146, 112442.	5.6	140
2	Eco-Friendly Aqueous Dye-Sensitized Solar Cell with a Copper(I/II) Electrolyte System: Efficient Performance under Ambient Light Conditions. ACS Applied Energy Materials, 2022, 5, 257-265.	5.1	10
3	The Effect of Different Ester Chain Modifications of Two Guaianolides for Inhibition of Colorectal Cancer Cell Growth. Molecules, 2021, 26, 5481.	3.8	1
4	New pyridyl-based dyes for co-sensitization in dye sensitized solar cells. Solar Energy, 2019, 187, 108-114.	6.1	24
5	Metal–Organic Framework Photocatalyst Incorporating Bis(4′-(4-carboxyphenyl)-terpyridine)ruthenium(II) for Visible-Light-Driven Carbon Dioxide Reduction. Journal of the American Chemical Society, 2019, 141, 7115-7121.	13.7	125
6	7-O-methylpunctatin, a Novel Homoisoflavonoid, Inhibits Phenotypic Switch of Human Arteriolar Smooth Muscle Cells. Biomolecules, 2019, 9, 716.	4.0	8
7	Large Enhancement of Dye Sensitized Solar Cell Efficiency by Co-sensitizing Pyridyl- and Carboxylic Acid-Based Dyes. ACS Applied Energy Materials, 2018, 1, 2776-2783.	5.1	23
8	Physicochemical, melissopalynological and antioxidant properties of artisanal honeys from Lebanon. Journal of Food Science and Technology, 2017, 54, 2296-2305.	2.8	19
9	Synthesis and in vitro cytotoxicity evaluation of ruthenium polypyridyl-sensitized paramagnetic titania nanoparticles for photodynamic therapy. RSC Advances, 2016, 6, 47520-47529.	3.6	6
10	High photo-currents with a zwitterionic thiocyanate-free dye in aqueous-based dye sensitized solar cells. Dalton Transactions, 2016, 45, 5622-5628.	3.3	15
11	Time resolved study of three ruthenium(II) complexes at micellar surfaces: A new long excited state lifetime probe for determining critical micelle concentration of surfactant nano-aggregates. Colloids and Surfaces B: Biointerfaces, 2016, 138, 32-40.	5.0	8
12	Anti-Inflammatory and Cytostatic Activities of a Parthenolide-Like Sesquiterpene Lactone fromCota palaestinasubsp.syriaca. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-13.	1.2	3
13	Highly robust tetrazolate based complexes for efficient and long-term stable dye sensitized solar cells. RSC Advances, 2015, 5, 66047-66056.	3.6	4
14	Novel poly-pyridyl ruthenium complexes with bis- and tris-tetrazolate mono-dentate ligands for dye sensitized solar cells. RSC Advances, 2014, 4, 18336-18340.	3.6	6
15	Universal Low-Temperature MWCNT-COOH-Based Counter Electrode and a New Thiolate/Disulfide Electrolyte System for Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8744-8753.	8.0	21
16	Do Counter Electrodes on Metal Substrates Work with Cobalt Complex Based Electrolyte in Dye Sensitized Solar Cells?. Journal of the Electrochemical Society, 2013, 160, H132-H137.	2.9	32
17	Differential Growth Inhibitory Effects of Highly Oxygenated Guaianolides Isolated from the Middle Eastern Indigenous Plant Achillea falcata in HCT-116 Colorectal Cancer Cells. Molecules, 2013, 18, 8275-8288.	3.8	11
18	Investigation of carbon nanotube webs as counter electrodes in a new organic electrolyte based dye sensitized solar cell. Journal of Materials Chemistry, 2012, 22, 862-869.	6.7	29

#	Article	IF	CITATIONS
19	Photophysical properties of new cyclometalated ruthenium complexes and their use in dye sensitized solar cells. Dalton Transactions, 2012, 41, 10643.	3.3	31
20	Dye adsorption, desorption, and distribution in mesoporous TiO2 films, and its effects on recombination losses in dye sensitized solar cells. Energy and Environmental Science, 2012, 5, 7203.	30.8	117
21	Solid-state photochemical and photomechanical properties of molecular crystal nanorods composed of anthracene ester derivatives. Journal of Materials Chemistry, 2011, 21, 6258.	6.7	76
22	Enhancement of photocurrent in dye sensitized solar cells incorporating a cyclometalated ruthenium complex with cuprous iodide as an electrolyte additive. Dalton Transactions, 2011, 40, 3877.	3.3	35
23	Waterâ€Based Electrolytes for Dyeâ€Sensitized Solar Cells. Advanced Materials, 2010, 22, 4505-4509.	21.0	156
24	Enhancement of photovoltaic performance of a novel dye, "T18â€; with ketene thioacetal groups as electron donors for high efficiency dye-sensitized solar cells. Inorganica Chimica Acta, 2010, 363, 2409-2415.	2.4	22
25	Theoretical Modeling of Front Propagation of CdS Nanoparticles in a Gel. Journal of Nano Research, 2010, 11, 19-24.	0.8	5
26	Fabrication of One-Dimensional Organic Nanostructures Using Anodic Aluminum Oxide Templates. Journal of Nanomaterials, 2009, 2009, 1-14.	2.7	46
27	Cobalt ferrite aerogels by epoxide sol–gel addition: Efficient catalysts for the hydrolysis of 4-nitrophenyl phosphate. Journal of Molecular Catalysis A, 2009, 312, 18-22.	4.8	22
28	Pulse-Front Propagation and Interaction During the Growth of CdS Nanoparticles in a Gel. Journal of Physical Chemistry B, 2009, 113, 11594-11603.	2.6	16
29	Application of synchronous fluorescence scan spectroscopy for size dependent simultaneous analysis of CdTe nanocrystals and their mixtures. Talanta, 2009, 77, 1549-1554.	5.5	36
30	Structure/Function Relationships in Dyes for Solar Energy Conversion: A Two-Atom Change in Dye Structure and the Mechanism for Its Effect on Cell Voltage. Journal of the American Chemical Society, 2009, 131, 3541-3548.	13.7	221
31	Re-evaluation of Recombination Losses in Dye-Sensitized Cells: The Failure of Dynamic Relaxation Methods to Correctly Predict Diffusion Length in Nanoporous Photoelectrodes. Nano Letters, 2009, 9, 3532-3538.	9.1	88
32	Sensory Thresholds of Selected Phenolic Constituents from Thyme and their Antioxidant Potential in Sunflower Oil. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 641-646.	1.9	17
33	Synthesis and photophysical properties of poly-(phenylenevinylene) dendrimers with a ruthenium tris-bipyridine core. Chemical Physics Letters, 2008, 460, 543-547.	2.6	3
34	A new ruthenium polypyridyl dye, TG6, whose performance in dye-sensitized solar cells is surprisingly close to that of N719, the †dye to beat' for 17 years. Journal of Materials Chemistry, 2008, 18, 4246.	6.7	102
35	Synthesis and Photophysical Properties of Ruthenium-Based Dendrimers and Their Use in Dye Sensitized Solar Cells. Inorganic Chemistry, 2008, 47, 3408-3414.	4.0	25
36	Photocurrent Generation in Layer-By-Layer Assembled Dendrimers with Ruthenium Tris-bipyridine Peripheral Groups and a Viologen-like Core. Langmuir, 2007, 23, 10807-10815.	3.5	20

#	Article	IF	CITATION
37	Identification of some rancidity measures at the end of the shelf life of sunflower oil. European Journal of Lipid Science and Technology, 2006, 108, 143-148.	1.5	25
38	Facile synthesis of poly-(I-lysine) dendrimers with a pentaaminecobalt(III) complex at the core. Tetrahedron Letters, 2005, 46, 5711-5714.	1.4	10
39	Electrostatic Layer-by-Layer Deposition of Photoactive Dendrimers with Triviologen-Like Cores on Their Surfaces. Synthesis and Electrochemical and Photocurrent Generation Measurements. Langmuir, 2005, 21, 8844-8851.	3.5	22
40	A Dendrimer-Based Electron Antenna: Paired Electron-Transfer Reactions in Dendrimers with a 4,4â€~-Bipyridine Core and Naphthalene Peripheral Groups. Journal of the American Chemical Society, 2002, 124, 8285-8289.	13.7	88
41	Excimer Formation in a Naphthalene-Labeled Dendrimer. Journal of Physical Chemistry B, 2001, 105, 8729-8731.	2.6	36
42	Pulse Radiolysis Studies of Dendritic Macromolecules with Biphenyl Peripheral Groups and a Ruthenium Tris-bipyridine Core. Journal of the American Chemical Society, 2001, 123, 12832-12836.	13.7	25
43	Molecular Recognition and Electron Transfer Across a Hydrogen Bonding Interface. Journal of the American Chemical Society, 2000, 122, 1233-1234.	13.7	63
44	Hydrogen bonding association of a ruthenium(II) bipyridine barbituric acid guest to complementary 2,6-diaminopyridine amide hosts: guidelines for designing high binding hydrogen bonding cavities in both high-and low-polarity solvents. Journal of Physical Organic Chemistry, 1999, 12, 247-254.	1.9	16