Sergiy Minko

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6103216/sergiy-minko-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18,487 64 133 221 h-index g-index citations papers 6.67 19,459 230 7.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
221	Highly flexible and conductive stainless-steel thread based piezoelectric coaxial yarn nanogenerators via solution coating and touch-spun nanofibers coating methods. <i>Smart Materials and Structures</i> , 2022 , 31, 035028	3.4	1
220	Infrared polarimetry: Anisotropy of polymer nanofibers. <i>Micro and Nano Engineering</i> , 2022 , 14, 100116	3.4	1
219	Long-Term Autonomic Thermoregulating Fabrics Based on Microencapsulated Phase Change Materials <i>ACS Applied Energy Materials</i> , 2021 , 4, 12789-12797	6.1	1
218	Biomimetic Cellulosomes Assembled on Molecular Brush Scaffolds: Random Complexes vs Enzyme Mixtures. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 1840-1853	4.3	1
217	Magneto-Controlled Enzyme Activity with Locally Produced pH Changes. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 2523-2527	6.4	2
216	All-Nanoparticle Monolayer Broadband Antireflective and Self-Cleaning Transparent Glass Coatings. <i>ACS Applied Materials & District Materials</i> (13, 6767-6777)	9.5	5
215	Polyethylene Glycol Crowder's Effect on Enzyme Aggregation, Thermal Stability, and Residual Catalytic Activity. <i>Langmuir</i> , 2021 , 37, 8474-8485	4	1
214	Carboxymethyl Cellulose Enhanced Production of Cellulose Nanofibrils. Fibers, 2021, 9, 57	3.7	2
213	Adaptive Hybrid Molecular Brushes Composed of Chitosan, Polylactide, and Poly(-vinyl pyrrolidone) for Support and Guiding Human Dermal Fibroblasts <i>ACS Applied Bio Materials</i> , 2020 , 3, 4118-4127	4.1	2
212	Gravity Drawing of Micro- and Nanofibers for Additive Manufacturing of Well-Organized 3D-Nanostructured Scaffolds. <i>Small</i> , 2020 , 16, e1907422	11	4
211	Fabrication of core-sheath nanoyarn via touchspinning and its application in wearable piezoelectric nanogenerator. <i>Journal of the Textile Institute</i> , 2020 , 111, 906-915	1.5	10
210	Enhanced neuronal differentiation of neural stem cells with mechanically enhanced touch-spun nanofibrous scaffolds. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2020 , 24, 102152	6	10
209	Touch-Spun Nanofibers for Nerve Regeneration. ACS Applied Materials & amp; Interfaces, 2020, 12, 2067	- 2 ,0 ,7 5	21
208	Adhesion and Stability of Nanocellulose Coatings on Flat Polymer Films and Textiles. <i>Molecules</i> , 2020 , 25,	4.8	8
207	Preprogrammed Dynamic Microstructured Polymer Interfaces. <i>Advanced Functional Materials</i> , 2020 , 30, 1903478	15.6	6
206	Nanocellulose-Based Sustainable Dyeing of Cotton Textiles with Minimized Water Pollution. <i>ACS Omega</i> , 2020 , 5, 9196-9203	3.9	11
205	Towards Nanomaterials for Cancer Theranostics: A System of DNA-Modified Magnetic Nanoparticles for Detection and Suppression of RNA Marker in Cancer Cells. <i>Magnetochemistry</i> , 2019 , 5, 24	3.1	12

(2016-2019)

204	Biofouling-Resistant Porous Membranes with a Precisely Adjustable Pore Diameter via 3D Polymer Grafting. <i>ACS Applied Materials & Diameter</i> , Interfaces, 2019 , 11, 18268-18275	9.5	3
203	Nanoreactors based on DNAzyme-functionalized magnetic nanoparticles activated by magnetic field. <i>Nanoscale</i> , 2018 , 10, 1356-1365	7.7	22
202	En Route to Practicality of the Polymer Grafting Technology: One-Step Interfacial Modification with Amphiphilic Molecular Brushes. <i>ACS Applied Materials & Description of the Polymer Grafting Technology: One-Step Interfacial Modification with Amphiphilic Molecular Brushes. ACS Applied Materials & Description of the Polymer Grafting Technology: One-Step Interfacial Modification with Amphiphilic Molecular Brushes. ACS Applied Materials & Description of the Polymer Grafting Technology: One-Step Interfacial Modification with Amphiphilic Molecular Brushes. ACS Applied Materials & Description of the Polymer Grafting Technology: One-Step Interfacial Modification with Amphiphilic Molecular Brushes. ACS Applied Materials & Description of the Polymer Grafting Technology: One-Step Interfaces, 2018, 10, 13941-13952</i>	9.5	9
201	Designing Highly Thermostable Lysozyme-Copolymer Conjugates: Focus on Effect of Polymer Concentration. <i>Biomacromolecules</i> , 2018 , 19, 1175-1188	6.9	6
200	High-performance flexible yarn for wearable piezoelectric nanogenerators. <i>Smart Materials and Structures</i> , 2018 , 27, 095018	3.4	37
199	Nanopatterning of Solvent between Apposing Planar Brushes under Pressure. <i>Macromolecules</i> , 2018 , 51, 6387-6394	5.5	2
198	Magnetic field remotely controlled selective biocatalysis. <i>Nature Catalysis</i> , 2018 , 1, 73-81	36.5	62
197	Magneto-Controlled Biocatalytic Cascades with Logically Processed Input Signals - Substrate Channeling versus Free Diffusion. <i>ChemPhysChem</i> , 2018 , 19, 3035-3043	3.2	14
196	Grafting through Method for Implanting of Lysozyme Enzyme in Molecular Brush for Improved Biocatalytic Activity and Thermal Stability. <i>Macromolecules</i> , 2018 , 51, 5039-5047	5.5	10
195	AFM Study of Polymer Brush Grafted to Deformable Surfaces: Quantitative Properties of the Brush and Substrate Mechanics. <i>Macromolecules</i> , 2017 , 50, 275-282	5.5	13
194	Magnetic Field-Activated Sensing of mRNA in Living Cells. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12117-12120	16.4	38
193	Environmentally sound textile dyeing technology with nanofibrillated cellulose. <i>Green Chemistry</i> , 2017 , 19, 4031-4035	10	32
192	Thermal Stabilization of Enzymes with Molecular Brushes. ACS Catalysis, 2017, 7, 8675-8684	13.1	16
191	DNA Computing Systems Activated by Electrochemically-triggered DNA Release from a Polymer-brush-modified Electrode Array. <i>Electroanalysis</i> , 2017 , 29, 398-408	3	16
190	Enzymogel Nanoparticles Chemistry for Highly Efficient Phase Boundary Biocatalysis 2017 , 369-399		2
189	Nanostructured Soft Matter with Magnetic Nanoparticles. <i>Advanced Functional Materials</i> , 2016 , 26, 370	51 <u>1</u> 3 7 87	2 35
188	Probing rough composite surfaces with atomic force microscopy: Nafion ionomer in fuel cell electrodes. <i>Polymer</i> , 2016 , 102, 396-403	3.9	15
187	Robust, Solvent-Free, Catalyst-Free Click Chemistry for the Generation of Highly Stable Densely Grafted Poly(ethylene glycol) Polymer Brushes by the Grafting To Method and Their Properties. <i>Macromolecules</i> , 2016 , 49, 7625-7631	5.5	37

186	Highly Porous 3D Fibrous Nanostructured Bioplolymer Films with Stimuli-Responsive Porosity via Phase Separation in Polymer Blend. <i>ACS Applied Materials & Distributed Materia</i>	9.5	14
185	Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles. <i>Applied Biochemistry and Biotechnology</i> , 2015 , 175, 2872-82	3.2	10
184	Enzyme-based logic systems interfaced with signal-responsive materials and electrodes. <i>Chemical Communications</i> , 2015 , 51, 3493-500	5.8	51
183	Tunable ultrathin membranes with nonvolatile pore shape memory. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 10401-6	9.5	16
182	Magnetospinning of Nano- and Microfibers. <i>Advanced Materials</i> , 2015 , 27, 3560-5	24	26
181	Magnetic field assisted assembly of highly ordered percolated nanostructures and their application for transparent conductive thin films. <i>Nanoscale</i> , 2015 , 7, 7155-61	7.7	25
180	AFM-Based Study of the Interaction Forces between Ceria, Silicon Dioxide and Polyurethane Pad during Non-Prestonian Polishing of Silicon Dioxide Films. <i>ECS Journal of Solid State Science and Technology</i> , 2015 , 4, P5016-P5020	2	8
179	Reactive Magnetospinning of Nano- and Microfibers. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13613-6	16.4	4
178	Touch- and Brush-Spinning of Nanofibers. <i>Advanced Materials</i> , 2015 , 27, 6526-32	24	44
177	Reactive Magnetospinning of Nano- and Microfibers. <i>Angewandte Chemie</i> , 2015 , 127, 13817-13820	3.6	
176	Electrochemically Stimulated DNA Release from a Polymer-Brush Modified Electrode. <i>Electroanalysis</i> , 2015 , 27, 2171-2179	3	10
175	Modeling the Effect of pH and Temperature for Cellulases Immobilized on Enzymogel Nanoparticles. <i>Applied Biochemistry and Biotechnology</i> , 2015 , 176, 1114-30	3.2	9
174	The toxicity of engineered nanoparticles on seed plants chronically exposed to low-level environmental radiation. <i>Russian Journal of Ecology</i> , 2015 , 46, 236-245	0.7	3
173	In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment. <i>ACS Applied Materials & Distriction (Materials & Distriction of Communication)</i> 12430-9	9.5	36
172	Highly efficient phase boundary biocatalysis with enzymogel nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 483-7	16.4	48
171	Reconfigurable Anisotropic Coatings via Magnetic Field-Directed Assembly and Translocation of Locking Magnetic Chains. <i>Advanced Functional Materials</i> , 2014 , 24, 4738-4745	15.6	26
170	High-Resolution Mapping of the PFSA Polymer Distribution in PEFC Electrode Layers. <i>ECS Transactions</i> , 2014 , 64, 819-827	1	2
169	Majority and minority gates realized in enzyme-biocatalyzed systems integrated with logic networks and interfaced with bioelectronic systems. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 6775-84	1 ^{3.4}	48

(2012-2014)

1	168	Plasmonic nanobiosensor with chain reaction amplification mechanism. <i>Chemistry - A European Journal</i> , 2014 , 20, 1226-30	4.8	6	
1	167	Titelbild: Highly Efficient Phase Boundary Biocatalysis with Enzymogel Nanoparticles (Angew. Chem. 2/2014). <i>Angewandte Chemie</i> , 2014 , 126, 339-339	3.6		
1	166	Highly Efficient Phase Boundary Biocatalysis with Enzymogel Nanoparticles. <i>Angewandte Chemie</i> , 2014 , 126, 493-497	3.6	6	
1	165	Imaging and Microanalysis of Thin Ionomer Layers by Scanning Transmission Electron Microscopy. Journal of the Electrochemical Society, 2014 , 161, F1111-F1117	3.9	42	
1	164	Stimuli-Responsive Biointerface Based on Polymer Brushes for Glucose Detection. <i>Electroanalysis</i> , 2014 , 26, 815-822	3	13	
1	163	Biomolecular release triggered by glucose inputbioelectronic coupling of sensing and actuating systems. <i>Chemical Communications</i> , 2013 , 49, 4755-7	5.8	33	
1	162	Electrode interfaces switchable by physical and chemical signals for biosensing, biofuel, and biocomputing applications. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 3659-72	4.4	54	
1	161	Wet-Spun Stimuli-Responsive Composite Fibers with Tunable Electrical Conductivity. <i>Advanced Functional Materials</i> , 2013 , 23, 5903-5909	15.6	24	
1	160	Thermostable branched DNA nanostructures as modular primers for polymerase chain reaction. Angewandte Chemie - International Edition, 2013 , 52, 8699-702	16.4	63	
1	159	Stimuli-Responsive Materials with Self-Healing Antifouling Surface via 3D Polymer Grafting. <i>Advanced Functional Materials</i> , 2013 , 23, 4593-4600	15.6	86	
1	158	Colloidal Occlusion Template Method for Micromanufacturing of Omniphobic Surfaces. <i>Advanced Functional Materials</i> , 2013 , 23, 870-877	15.6	17	
1	157	Thermostable Branched DNA Nanostructures as Modular Primers for Polymerase Chain Reaction. <i>Angewandte Chemie</i> , 2013 , 125, 8861-8864	3.6	16	
1	156	Polymer Gradients: Responsive Grafted Layers 2012 , 303-328			
1	155	Tunable plasmonic nanostructures from noble metal nanoparticles and stimuli-responsive polymers. <i>Soft Matter</i> , 2012 , 8, 5980	3.6	98	
1	154	Biocompatible stimuli-responsive hydrogel porous membranes via phase separation of a polyvinyl alcohol and Na-alginate intermolecular complex. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19482		53	
1	153	Field-directed self-assembly with locking nanoparticles. <i>Nano Letters</i> , 2012 , 12, 3814-20	11.5	35	
1	152	Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects. <i>Nanoscale</i> , 2012 , 4, 284-92	7.7	26	
1	151	Responsive Surfaces for Life Science Applications. <i>Annual Review of Materials Research</i> , 2012 , 42, 343-3	72 2.8	48	

150	Electrochemically controlled drug-mimicking protein release from iron-alginate thin-films associated with an electrode. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 466-75	9.5	117
149	Stimuli-Responsive Fine Particles 2012 , 283-308		1
148	Mixed polymer brushes with locking switching. ACS Applied Materials & amp; Interfaces, 2012, 4, 483-9	9.5	63
147	Toward fabric-based flexible microfluidic devices: pointed surface modification for pH sensitive liquid transport. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 4541-8	9.5	35
146	Conformational transitions of flexible hydrophobic polyelectrolytes in solutions of monovalent and multivalent salts and their mixtures. <i>Langmuir</i> , 2012 , 28, 6037-44	4	36
145	Superomniphobic magnetic microtextures with remote wetting control. <i>Journal of the American Chemical Society</i> , 2012 , 134, 12916-9	16.4	97
144	Wound-healing with mechanically robust and biodegradable hydrogel fibers loaded with silver nanoparticles. <i>Advanced Healthcare Materials</i> , 2012 , 1, 621-30	10.1	61
143	AFM imaging of adsorbed Nafion polymer on mica and graphite at molecular level. <i>Langmuir</i> , 2011 , 27, 10157-66	4	29
142	Effect of Local Charge Distribution on Graphite Surface on Nafion Polymer Adsorption as Visualized at the Molecular Level. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 16019-16026	3.8	13
141	Phase behavior and self-assembly of PSn(P2VP-b-PAA)n multiarmed multisegmented star terpolymers with ampholytic arms. <i>Polymer Chemistry</i> , 2011 , 2, 2037	4.9	19
140	Stimuli-responsive hydrogel hollow capsules by material efficient and robust cross-linking-precipitation synthesis revisited. <i>Langmuir</i> , 2011 , 27, 15305-11	4	15
139	Materials with Built-in Logic. Journal of Computational and Theoretical Nanoscience, 2011 , 8, 356-364	0.3	25
138	Optical nanosensor platform operating in near-physiological pH range via polymer-brush-mediated plasmon coupling. ACS Applied Materials & amp; Interfaces, 2011, 3, 143-6	9.5	42
137	Polyolefin surface activation by grafting of functional polyperoxide. <i>Reactive and Functional Polymers</i> , 2011 , 71, 210-218	4.6	9
136	Emerging applications of stimuli-responsive polymer materials. <i>Nature Materials</i> , 2010 , 9, 101-13	27	4474
135	Single molecule experiments visualizing adsorbed polyelectrolyte molecules in the full range of mono- and divalent counterion concentrations. <i>Journal of the American Chemical Society</i> , 2010 , 132, 13	660 -2	38
134	Fluorescent nanoparticles stabilized by poly(ethylene glycol) containing shell for pH-triggered tunable aggregation in aqueous environment. <i>Langmuir</i> , 2010 , 26, 10684-92	4	31
133	Reversible "closing" of an electrode interface functionalized with a polymer brush by an electrochemical signal. <i>Langmuir</i> , 2010 , 26, 4506-13	4	71

132	Robust synthesis of nanogel particles by an aggregation-crosslinking method. Soft Matter, 2010, 6, 4396	63.6	7
131	Modified Electrodes with Switchable Selectivity for Cationic and Anionic Redox Species. <i>Electroanalysis</i> , 2010 , 22, 35-40	3	53
130	Synthetic Hydrophilic Materials with Tunable Strength and a Range of Hydrophobic Interactions. <i>Advanced Functional Materials</i> , 2010 , 20, 2240-2247	15.6	64
129	Specific biochemical-to-optical signal transduction by responsive thin hydrogel films loaded with noble metal nanoparticles. <i>Advanced Materials</i> , 2010 , 22, 1412-6	24	63
128	Electrochemical nanotransistor from mixed-polymer brushes. Advanced Materials, 2010, 22, 1863-6	24	40
127	Stimuli-responsive porous hydrogels at interfaces for molecular filtration, separation, controlled release, and gating in capsules and membranes. <i>Advanced Materials</i> , 2010 , 22, 3446-62	24	283
126	Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. <i>Progress in Polymer Science</i> , 2010 , 35, 174-211	29.6	653
125	Structure of salted and discharged globules of hydrophobic polyelectrolytes adsorbed from aqueous solutions. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2010 , 48, 1623-1627	2.6	9
124	Coatings via Self-Assembly of Smart Nanoparticles. ACS Symposium Series, 2009, 145-157	0.4	2
123	Low Adhesive Surfaces that Adapt to Changing Environments. <i>Advanced Materials</i> , 2009 , 21, 1840-1844	24	59
123	Low Adhesive Surfaces that Adapt to Changing Environments. <i>Advanced Materials</i> , 2009 , 21, 1840-1844 Enzyme-based logic systems and their applications for novel multi-signal-responsive materials. <i>Journal of Materials Science: Materials in Medicine</i> , 2009 , 20, 457-62	4.5	59 47
, in the second	Enzyme-based logic systems and their applications for novel multi-signal-responsive materials.		
122	Enzyme-based logic systems and their applications for novel multi-signal-responsive materials. Journal of Materials Science: Materials in Medicine, 2009, 20, 457-62 An integrated multifunctional nanosystem from command nanoparticles and enzymes. Small, 2009,	4.5	47
122	Enzyme-based logic systems and their applications for novel multi-signal-responsive materials. Journal of Materials Science: Materials in Medicine, 2009, 20, 457-62 An integrated multifunctional nanosystem from command nanoparticles and enzymes. Small, 2009, 5, 817-20 Polymer brushes as active nanolayers for tunable bacteria adhesion. Materials Science and	4.5	47 60
122 121 120	Enzyme-based logic systems and their applications for novel multi-signal-responsive materials. Journal of Materials Science: Materials in Medicine, 2009, 20, 457-62 An integrated multifunctional nanosystem from command nanoparticles and enzymes. Small, 2009, 5, 817-20 Polymer brushes as active nanolayers for tunable bacteria adhesion. Materials Science and Engineering C, 2009, 29, 680-684 Dual magnetobiochemical logic control of electrochemical processes based on local interfacial pH	4.5	47 60 50
122 121 120	Enzyme-based logic systems and their applications for novel multi-signal-responsive materials. Journal of Materials Science: Materials in Medicine, 2009, 20, 457-62 An integrated multifunctional nanosystem from command nanoparticles and enzymes. Small, 2009, 5, 817-20 Polymer brushes as active nanolayers for tunable bacteria adhesion. Materials Science and Engineering C, 2009, 29, 680-684 Dual magnetobiochemical logic control of electrochemical processes based on local interfacial pH changes. ACS Applied Materials & Control of electrochemical processes based on local interfacial pH changes. ACS Applied Materials & Control of electrochemical processes based on local interfacial pH changes. ACS Applied Materials & Control of electrochemical processes based on local interfacial pH changes. ACS Applied Materials & Control of electrochemical processes based on local interfacial pH changes. ACS Applied Materials & Control of electrochemical processes based on local interfacial pH changes. ACS Applied Materials & Control of electrochemical processes based on local interfacial pH changes.	4.5 11 8.3 9.5	47 60 50 42
122 121 120 119	Enzyme-based logic systems and their applications for novel multi-signal-responsive materials. Journal of Materials Science: Materials in Medicine, 2009, 20, 457-62 An integrated multifunctional nanosystem from command nanoparticles and enzymes. Small, 2009, 5, 817-20 Polymer brushes as active nanolayers for tunable bacteria adhesion. Materials Science and Engineering C, 2009, 29, 680-684 Dual magnetobiochemical logic control of electrochemical processes based on local interfacial pH changes. ACS Applied Materials & Samp; Interfaces, 2009, 1, 1166-8 Interaction of lipid membrane with nanostructured surfaces. Langmuir, 2009, 25, 6287-99 Stimuli-responsive properties of peptide-based copolymers studied via directional growth of	4.5 111 8.3 9.5	47 60 50 42 73

114	Stimuli-responsive hydrogel membranes coupled with biocatalytic processes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2009 , 1, 532-6	9.5	141
113	Bioelectrocatalytic system coupled with enzyme-based biocomputing ensembles performing boolean logic operations: approaching "smart" physiologically controlled biointerfaces. <i>ACS Applied Materials & Materials </i>	9.5	72
112	Switchable selectivity for gating ion transport with mixed polyelectrolyte brushes: approaching 'smart' drug delivery systems. <i>Nanotechnology</i> , 2009 , 20, 434006	3.4	84
111	Molecular-engineered stimuli-responsive thin polymer film: a platform for the development of integrated multifunctional intelligent materials. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6932		95
110	Stimuli-responsive hydrogel thin films. <i>Soft Matter</i> , 2009 , 5, 511-524	3.6	462
109	Biochemically controlled bioelectrocatalytic interface. <i>Journal of the American Chemical Society</i> , 2008 , 130, 10888-9	16.4	90
108	Magneto-Induced Self-Assembling of Conductive Nanowires for Biosensor Applications. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 7337-7344	3.8	55
107	Adapting low-adhesive thin films from mixed polymer brushes. <i>Langmuir</i> , 2008 , 24, 13828-32	4	39
106	Chemical gating with nanostructured responsive polymer brushes: mixed brush versus homopolymer brush. <i>ACS Nano</i> , 2008 , 2, 41-52	16.7	160
105	"Chemical transformers" from nanoparticle ensembles operated with logic. <i>Nano Letters</i> , 2008 , 8, 2993	3-7 11.5	120
105	"Chemical transformers" from nanoparticle ensembles operated with logic. <i>Nano Letters</i> , 2008 , 8, 2993 Grafting on Solid Surfaces: Cirafting tolland Cirafting from Methods 2008 , 215-234	3-7 _{11.5}	120
		3-7 11.5 9.6	
104	Grafting on Solid Surfaces: Cirafting toland Cirafting from Methods 2008, 215-234 Fluorescent Reactive CoreBhell Composite Nanoparticles with A High Surface Concentration of		82
104	Grafting on Solid Surfaces: Crafting toland Crafting from Methods 2008, 215-234 Fluorescent Reactive CoreBhell Composite Nanoparticles with A High Surface Concentration of Epoxy Functionalities. Chemistry of Materials, 2008, 20, 317-325 Polymer Brush-Modified Electrode with Switchable and Tunable Redox Activity for Bioelectronic	9.6	82
104	Grafting on Solid Surfaces: Crafting tolland Crafting from Methods 2008, 215-234 Fluorescent Reactive CoreBhell Composite Nanoparticles with A High Surface Concentration of Epoxy Functionalities. Chemistry of Materials, 2008, 20, 317-325 Polymer Brush-Modified Electrode with Switchable and Tunable Redox Activity for Bioelectronic Applications. Journal of Physical Chemistry C, 2008, 112, 8438-8445 Responsive brush layers: from tailored gradients to reversibly assembled nanoparticles. Soft Matter	9.6	82 62 156
104 103 102	Grafting on Solid Surfaces: Crafting toland Crafting from Methods 2008, 215-234 Fluorescent Reactive CoreShell Composite Nanoparticles with A High Surface Concentration of Epoxy Functionalities. Chemistry of Materials, 2008, 20, 317-325 Polymer Brush-Modified Electrode with Switchable and Tunable Redox Activity for Bioelectronic Applications. Journal of Physical Chemistry C, 2008, 112, 8438-8445 Responsive brush layers: from tailored gradients to reversibly assembled nanoparticles. Soft Matter, 2008, 4, 714-725	9.6 3.8 3.6	82 62 156 223
104 103 102 101	Grafting on Solid Surfaces: Grafting toland Grafting from Methods 2008, 215-234 Fluorescent Reactive CoreShell Composite Nanoparticles with A High Surface Concentration of Epoxy Functionalities. Chemistry of Materials, 2008, 20, 317-325 Polymer Brush-Modified Electrode with Switchable and Tunable Redox Activity for Bioelectronic Applications. Journal of Physical Chemistry C, 2008, 112, 8438-8445 Responsive brush layers: from tailored gradients to reversibly assembled nanoparticles. Soft Matter, 2008, 4, 714-725 Single nanoparticle plasmonic devices by the "grafting to" method. Langmuir, 2008, 24, 8976-80 Diversity of Nanostructured Self-Assemblies from a pH-Responsive ABC Terpolymer in Aqueous	9.6 3.8 3.6	82 62 156 223

(2006-2008)

96	Gold-nanoparticle-enhanced plasmonic effects in a responsive polymer gel. <i>Advanced Materials</i> , 2008 , 20, 2730-4	24	84
95	Multiresponsive Biopolyelectrolyte Membrane. <i>Advanced Materials</i> , 2008 , 20, 4588-4593	24	53
94	Interaction of nanoparticles with lipid membrane. Nano Letters, 2008, 8, 941-4	11.5	295
93	Nonwettable thin films from hybrid polymer brushes can be hydrophilic. <i>Langmuir</i> , 2007 , 23, 13-9	4	63
92	pH-Responsive Thin Film Membranes from Poly(2-vinylpyridine): Water Vapor-Induced Formation of a Microporous Structure. <i>Macromolecules</i> , 2007 , 40, 2086-2091	5.5	78
91	An electrochemical gate based on a stimuli-responsive membrane associated with an electrode surface. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 12141-5	3.4	68
90	Adsorption of polyelectrolyte versus surface charge: in situ single-molecule atomic force microscopy experiments on similarly, oppositely, and heterogeneously charged surfaces. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 8597-604	3.4	37
89	In situ infrared ellipsometric study of stimuli-responsive mixed polyelectrolyte brushes. <i>Analytical Chemistry</i> , 2007 , 79, 7676-82	7.8	53
88	Smart Responsive Coatings from Mixed Polymer Brushes. ACS Symposium Series, 2007, 79-93	0.4	1
87	Three-Dimensional Analysis of Switching Mechanism of Mixed Polymer Brushes. <i>Macromolecules</i> , 2007 , 40, 8774-8783	5.5	68
86	Low pressure plasma-based approaches to fluorocarbon polymer surface modification. <i>Journal of Applied Polymer Science</i> , 2007 , 103, 100-109	2.9	21
85	Stimuli-Responsive Colloidal Systems from Mixed Brush-Coated Nanoparticles. <i>Advanced Functional Materials</i> , 2007 , 17, 2307-2314	15.6	133
84	Metallic nickel nanorod arrays embedded into ordered block copolymer templates. <i>Thin Solid Films</i> , 2007 , 515, 6552-6556	2.2	38
83	Responsive colloidal systems: reversible aggregation and fabrication of superhydrophobic surfaces. <i>Journal of Colloid and Interface Science</i> , 2007 , 310, 481-8	9.3	83
82	A structural definition of polymer brushes. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 3505-3512	2.5	459
81	Surface functionalization by smart coatings: Stimuli-responsive binary polymer brushes. <i>Progress in Organic Coatings</i> , 2006 , 55, 168-174	4.8	116
80	Smart Microfluidic Channels. Advanced Functional Materials, 2006, 16, 1153-1160	15.6	148
79	Responsive Polyelectrolyte Gel Membranes. <i>Advanced Materials</i> , 2006 , 18, 2458-2460	24	90

78	Responsive Polymer Brushes. <i>Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics</i> , 2006 , 46, 397-420		223
77	Polyelectrolyte Stabilized Nanowires from Fe3O4Nanoparticles via Magnetic Field Induced Self-Assembly. <i>Chemistry of Materials</i> , 2006 , 18, 591-593	9.6	111
76	Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy. <i>Chemical Communications</i> , 2006 , 3343-5	5.8	71
75	Cationic Telechelic Polyelectrolytes: Synthesis by Group Transfer Polymerization and Self-Organization in Aqueous Media. <i>Macromolecules</i> , 2006 , 39, 678-683	5.5	64
74	Conformation of single polyelectrolyte chains vs. salt concentration: Effects of sample history and solid substrate. <i>Polymer</i> , 2006 , 47, 2493-2498	3.9	37
73	Stimuli-responsive mixed grafted polymer films with gradually changing properties: direct determination of chemical composition. <i>Langmuir</i> , 2005 , 21, 8711-6	4	40
72	Microphase Separation in Thin Films of Poly(styrene-block-4-vinylpyridine) Copolymer 2-(4 Hydroxybenzeneazo)benzoic Acid Assembly. <i>Macromolecules</i> , 2005 , 38, 507-516	5.5	131
71	AFM Imaging of Single Polycation Molecules Contrasted with Cyanide-Bridged Compounds. <i>Macromolecules</i> , 2005 , 38, 501-506	5.5	18
70	AFM single molecule experiments at the solid-liquid interface: in situ conformation of adsorbed flexible polyelectrolyte chains. <i>Journal of the American Chemical Society</i> , 2005 , 127, 15688-9	16.4	141
69	From smart polymer molecules to responsive nanostructured surfaces. <i>Langmuir</i> , 2005 , 21, 8591-3	4	79
68	Mixed Polymer Brushes: Switching of Surface Behavior and Chemical Patterning at the Nanoscale 2005 , 403-425		4
67	Local Chain Organization of Switchable Binary Polymer Brushes in Selective Solvents 2005 , 427-440		
66	Gradient Stimuli-Responsive Polymer Grafted Layers. ACS Symposium Series, 2005, 68-83	0.4	4
65	AFM single molecule studies of adsorbed polyelectrolytes. <i>Current Opinion in Colloid and Interface Science</i> , 2005 , 10, 9-15	7.6	47
64	Compatibilization of polymer blends with high-molecular-weight peroxides. <i>Journal of Applied Polymer Science</i> , 2005 , 96, 232-242	2.9	16
63	Multifunctional Stimuli Responsive ABC Terpolymers: From Three-Compartment Micelles to Three-Dimensional Network. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1371-1376	4.8	38
62	Photochemical structuring and fixing of structures in binary polymer brush layers via 2pi+2pi photodimerization. <i>Journal of Colloid and Interface Science</i> , 2005 , 282, 349-58	9.3	11
61	Conformation of Polymer Molecule via Atomic Force Microscopy. <i>ACS Symposium Series</i> , 2005 , 207-223	0.4	1

60	Gradient Mixed Brushes: Cirafting ToDApproach. Macromolecules, 2004, 37, 7421-7423	5.5	100
59	Non-equilibrium adsorption at solid/liquid interfaces from polyelectrolyte solutions. <i>Colloid and Polymer Science</i> , 2004 , 282, 1000-1007	2.4	6
58	Gradient Polymer Layers by G rafting To A pproach. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 360-365	4.8	96
57	Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. <i>Progress in Polymer Science</i> , 2004 , 29, 635-698	29.6	511
56	Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. <i>Journal of the American Chemical Society</i> , 2004 , 126, 15950-1	16.4	318
55	Inverse and reversible switching gradient surfaces from mixed polyelectrolyte brushes. <i>Langmuir</i> , 2004 , 20, 9916-9	4	112
54	Polyelectrolyte Brushes. Advances in Polymer Science, 2004 , 79-150	1.3	327
53	Mixed polymer brushes by sequential polymer addition: anchoring layer effect. <i>Langmuir</i> , 2004 , 20, 406	4 ₄ 75	112
52	Polypropylene surface peroxidation with heterofunctional polyperoxides. <i>Macromolecular Symposia</i> , 2004 , 210, 339-348	0.8	17
51	Switching and structuring of binary reactive polymer brush layers. <i>Macromolecular Symposia</i> , 2004 , 210, 229-235	0.8	20
50	Nanostructures and Functionalities in Polymer Thin Films. <i>Macromolecular Symposia</i> , 2004 , 214, 73-84	0.8	6
49	Reconformation and Metallization of Unimolecular Micelles in Controlled Environment. <i>Nano Letters</i> , 2003 , 3, 365-368	11.5	88
48	Bidisperse Mixed Brushes: Synthesis and Study of Segregation in Selective Solvent. <i>Macromolecules</i> , 2003 , 36, 7268-7279	5.5	78
47	Reorganization of Binary Polymer Brushes: Reversible Switching of Surface Microstructures and Nanomechanical Properties. <i>Macromolecules</i> , 2003 , 36, 7244-7255	5.5	155
46	Two-level structured self-adaptive surfaces with reversibly tunable properties. <i>Journal of the American Chemical Society</i> , 2003 , 125, 3896-900	16.4	448
45	Ordered reactive nanomembranes/nanotemplates from thin films of block copolymer supramolecular assembly. <i>Journal of the American Chemical Society</i> , 2003 , 125, 12211-6	16.4	284
44	Single Molecules and Associates of Heteroarm Star Copolymer Visualized by Atomic Force Microscopy. <i>Macromolecules</i> , 2003 , 36, 8704-8711	5.5	101
43	Chemical contrasting in a single polymer molecule AFM experiment. <i>Journal of the American Chemical Society</i> , 2003 , 125, 11202-3	16.4	58

42	Direct Measurement of Thermoelastic Properties of Glassy and Rubbery Polymer Brush Nanolayers Grown by G rafting-from Approach. <i>Langmuir</i> , 2003 , 19, 6126-6134	4	66
41	Reversible chemical patterning on stimuli-responsive polymer film: environment-responsive lithography. <i>Journal of the American Chemical Society</i> , 2003 , 125, 8302-6	16.4	151
40	Reversible Tuning of Wetting Behavior of Polymer Surface with Responsive Polymer Brushes. <i>Langmuir</i> , 2003 , 19, 8077-8085	4	159
39	One-Dimensional Aggregation of Regioregular Polyalkylthiophenes. <i>Nano Letters</i> , 2003 , 3, 707-712	11.5	234
38	Mixed Polyelectrolyte Brush from Oppositely Charged Polymers for Switching of Surface Charge and Composition in Aqueous Environment. <i>Macromolecules</i> , 2003 , 36, 5897-5901	5.5	152
37	Lateral versus perpendicular segregation in mixed polymer brushes. <i>Physical Review Letters</i> , 2002 , 88, 035502	7.4	179
36	Mineralization of single flexible polyelectrolyte molecules. <i>Journal of the American Chemical Society</i> , 2002 , 124, 10192-7	16.4	84
35	Palladium Wire-Shaped Nanoparticles from Single Synthetic Polycation Molecules. <i>Nano Letters</i> , 2002 , 2, 881-885	11.5	60
34	Synthesis of Adaptive Polymer Brushes via G rafting To A pproach from Melt. <i>Langmuir</i> , 2002 , 18, 289-29	964	218
33	Single flexible hydrophobic polyelectrolyte molecules adsorbed on solid substrate: transition between a stretched chain, necklace-like conformation and a globule. <i>Journal of the American Chemical Society</i> , 2002 , 124, 3218-9	16.4	131
32	Cascade of coil-globule conformational transitions of single flexible polyelectrolyte molecules in poor solvent. <i>Journal of the American Chemical Society</i> , 2002 , 124, 13454-62	16.4	152
31	Metallic Nanoparticles from Single Polyelectrolyte Molecules. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 726, 1		
30	Nanostructured Polymer Brushes With Reversibly Changing Properties. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 727, 1		1
29	Hairy TubelPolymer Templates From Diblock Copolymer Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 728, 151		
28	Application of Acoustic Emission Measurements to Investigate Adhesion in Filled Polymeric Composites 2001 , 75, 257-266		5
27	Environment-Adopting Surfaces with Reversibly Switchable Morphology. <i>Macromolecular Rapid Communications</i> , 2001 , 22, 206-211	4.8	106
26	Evaluation of the polymer-nonpolymer adhesion in particle-filled polymers with the acoustic emission method. <i>Journal of Adhesion Science and Technology</i> , 2000 , 14, 999-1019	2	6
25	Oscillation Phenomenon at Polymer Adsorption. <i>Langmuir</i> , 2000 , 16, 7876-7878	4	10

(1996-2000)

24	Switching of Surface Properties with Polymer Brushes. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 629, 1		
23	Investigation of failure mechanisms in polymer composites by simultaneous measurement of ultra-small-angle scattering and acoustic emission during the deformation. II. Evaluation of the interface strength. <i>Journal of Macromolecular Science - Physics</i> , 1999 , 38, 913-929	1.4	7
22	Investigation of craze development using small-angle X-ray scattering of synchrotron radiation. Journal of Macromolecular Science - Physics, 1999 , 38, 869-883	1.4	13
21	Oscillatory phenomena at polyvinylpyridine/silica interfaces. <i>Macromolecular Rapid Communications</i> , 1999 , 20, 85-87	4.8	7
20	Investigation of failure mechanisms in polymer composites by simultaneous measurement of ultra-small-angle scattering and acoustic emission during the deformation. I. Method. <i>Journal of Macromolecular Science - Physics</i> , 1999 , 38, 901-912	1.4	12
19	Radical Polymerization Initiated from a Solid Substrate. 1. Theoretical Background. <i>Macromolecules</i> , 1999 , 32, 4525-4531	5.5	39
18	Radical Polymerization Initiated from a Solid Substrate. 3. Grafting from the Surface of an Ultrafine Powder. <i>Macromolecules</i> , 1999 , 32, 4539-4543	5.5	45
17	Radical Polymerization Initiated from a Solid Substrate. 2. Study of the Grafting Layer Growth on the Silica Surface by in situ Ellipsometry. <i>Macromolecules</i> , 1999 , 32, 4532-4538	5.5	34
16	Switching of Polymer Brushes. <i>Langmuir</i> , 1999 , 15, 8349-8355	4	212
15	Effect of polyacrylate binding layers on adhesion of UV-cured epoxyacrylate protective coatings on optical fibers. <i>Journal of Applied Polymer Science</i> , 1998 , 67, 1913-1923	2.9	10
14	The strength of the tailored polymer/inclusion interface in polymer composites evaluated in situ by acoustic emission. <i>Polymer Bulletin</i> , 1998 , 41, 247-252	2.4	2
13	Adsorption of Protonated Poly(vinylpyridine) on Silica. Correlation between Interfacial Conformation and Colloid Stability. <i>Macromolecules</i> , 1998 , 31, 6387-6389	5.5	5
12	Synthesis and Behavior of the Polymer Covering on a Solid Surface. 3. Morphology and Mechanism of Formation of Grafted Polystyrene Layers on the Glass Surface. <i>Macromolecules</i> , 1998 , 31, 3945-3952	5.5	47
11	Adsorption of Polymers at the Surface Concentrations in the Diluted to Semidiluted Regimes. <i>Macromolecules</i> , 1997 , 30, 6929-6936	5.5	9
10	Investigation of debonding processes in particle-filled polymer materials by acoustic emission: Part II Acoustic emission amplitude and energy release by debonding. <i>Journal of Materials Science</i> , 1997 , 32, 4405-4410	4.3	13
9	Investigation of debonding processes in particle-filled polymer materials by acoustic emission: Part I Acoustic emission and debonding stress. <i>Journal of Materials Science</i> , 1997 , 32, 4397-4403	4.3	21
8	A Kinetic Method for Investigating the Structure of Adsorbed Polymer Layers. <i>Adsorption Science and Technology</i> , 1996 , 14, 251-257	3.6	4
7	Modification of the Surface of a Substrate by Adsorbed Polymer Interlayers for the Control of Adhesion. <i>Adsorption Science and Technology</i> , 1996 , 14, 259-266	3.6	3

6	Structure and reactivity of peroxide monomers. Journal of Polymer Science Part A, 1996, 34, 2507-2511	2.5	11
5	Synthesis and behaviour of the polymer covering on a solid surface: 1. Attachment of the polymer initiator to the solid surface. <i>Polymer</i> , 1996 , 37, 177-181	3.9	13
4	Regular Patterned Surfaces from Core-Shell Particles. Preparation and Characterization72-81		19
3	Refining of Particulates at Stimuli-Responsive Interfaces: Label-Free Sorting and Isolation. Angewandte Chemie, e202110990	3.6	
2	Environment-friendly nanocellulose-indigo dyeing of textiles. Green Chemistry,	10	3
1	Melt coated flexible stainless-steel thread based co-axial triboelectric yarn nanogenerators. Materials Technology,1-15	2.1	О