Sergiy Minko

List of Publications by Citations

Source: https://exaly.com/author-pdf/6103216/sergiy-minko-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18,487 64 133 221 h-index g-index citations papers 6.67 19,459 230 7.9 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
221	Emerging applications of stimuli-responsive polymer materials. <i>Nature Materials</i> , 2010 , 9, 101-13	27	4474
220	Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. <i>Progress in Polymer Science</i> , 2010 , 35, 174-211	29.6	653
219	Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. <i>Progress in Polymer Science</i> , 2004 , 29, 635-698	29.6	511
218	Stimuli-responsive hydrogel thin films. <i>Soft Matter</i> , 2009 , 5, 511-524	3.6	462
217	A structural definition of polymer brushes. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 3505-3512	2.5	459
216	Two-level structured self-adaptive surfaces with reversibly tunable properties. <i>Journal of the American Chemical Society</i> , 2003 , 125, 3896-900	16.4	448
215	Polyelectrolyte Brushes. <i>Advances in Polymer Science</i> , 2004 , 79-150	1.3	327
214	Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. <i>Journal of the American Chemical Society</i> , 2004 , 126, 15950-1	16.4	318
213	Interaction of nanoparticles with lipid membrane. <i>Nano Letters</i> , 2008 , 8, 941-4	11.5	295
212	Ordered reactive nanomembranes/nanotemplates from thin films of block copolymer supramolecular assembly. <i>Journal of the American Chemical Society</i> , 2003 , 125, 12211-6	16.4	284
211	Stimuli-responsive porous hydrogels at interfaces for molecular filtration, separation, controlled release, and gating in capsules and membranes. <i>Advanced Materials</i> , 2010 , 22, 3446-62	24	283
210	One-Dimensional Aggregation of Regioregular Polyalkylthiophenes. <i>Nano Letters</i> , 2003 , 3, 707-712	11.5	234
209	Responsive brush layers: from tailored gradients to reversibly assembled nanoparticles. <i>Soft Matter</i> , 2008 , 4, 714-725	3.6	223
208	Responsive Polymer Brushes. <i>Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics</i> , 2006 , 46, 397-420		223
207	Synthesis of Adaptive Polymer Brushes via G rafting TolApproach from Melt. <i>Langmuir</i> , 2002 , 18, 289-29	64	218
206	Switching of Polymer Brushes. <i>Langmuir</i> , 1999 , 15, 8349-8355	4	212
205	Lateral versus perpendicular segregation in mixed polymer brushes. <i>Physical Review Letters</i> , 2002 , 88, 035502	7.4	179

(2004-2008)

204	Chemical gating with nanostructured responsive polymer brushes: mixed brush versus homopolymer brush. <i>ACS Nano</i> , 2008 , 2, 41-52	16.7	160
203	Reversible Tuning of Wetting Behavior of Polymer Surface with Responsive Polymer Brushes. <i>Langmuir</i> , 2003 , 19, 8077-8085	4	159
202	Polymer Brush-Modified Electrode with Switchable and Tunable Redox Activity for Bioelectronic Applications. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 8438-8445	3.8	156
201	Reorganization of Binary Polymer Brushes: Reversible Switching of Surface Microstructures and Nanomechanical Properties. <i>Macromolecules</i> , 2003 , 36, 7244-7255	5.5	155
200	Mixed Polyelectrolyte Brush from Oppositely Charged Polymers for Switching of Surface Charge and Composition in Aqueous Environment. <i>Macromolecules</i> , 2003 , 36, 5897-5901	5.5	152
199	Cascade of coil-globule conformational transitions of single flexible polyelectrolyte molecules in poor solvent. <i>Journal of the American Chemical Society</i> , 2002 , 124, 13454-62	16.4	152
198	Reversible chemical patterning on stimuli-responsive polymer film: environment-responsive lithography. <i>Journal of the American Chemical Society</i> , 2003 , 125, 8302-6	16.4	151
197	Smart Microfluidic Channels. Advanced Functional Materials, 2006, 16, 1153-1160	15.6	148
196	Stimuli-responsive hydrogel membranes coupled with biocatalytic processes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2009 , 1, 532-6	9.5	141
195	AFM single molecule experiments at the solid-liquid interface: in situ conformation of adsorbed flexible polyelectrolyte chains. <i>Journal of the American Chemical Society</i> , 2005 , 127, 15688-9	16.4	141
194	Stimuli-Responsive Colloidal Systems from Mixed Brush-Coated Nanoparticles. <i>Advanced Functional Materials</i> , 2007 , 17, 2307-2314	15.6	133
193	Microphase Separation in Thin Films of Poly(styrene-block-4-vinylpyridine) Copolymer 2-(4 Hydroxybenzeneazo) benzoic Acid Assembly. <i>Macromolecules</i> , 2005 , 38, 507-516	5.5	131
192	Single flexible hydrophobic polyelectrolyte molecules adsorbed on solid substrate: transition between a stretched chain, necklace-like conformation and a globule. <i>Journal of the American Chemical Society</i> , 2002 , 124, 3218-9	16.4	131
191	"Chemical transformers" from nanoparticle ensembles operated with logic. Nano Letters, 2008, 8, 2993-	711.5	120
190	Electrochemically controlled drug-mimicking protein release from iron-alginate thin-films associated with an electrode. <i>ACS Applied Materials & Amp; Interfaces</i> , 2012 , 4, 466-75	9.5	117
189	Surface functionalization by smart coatings: Stimuli-responsive binary polymer brushes. <i>Progress in Organic Coatings</i> , 2006 , 55, 168-174	4.8	116
188	Inverse and reversible switching gradient surfaces from mixed polyelectrolyte brushes. <i>Langmuir</i> , 2004 , 20, 9916-9	4	112
187	Mixed polymer brushes by sequential polymer addition: anchoring layer effect. <i>Langmuir</i> , 2004 , 20, 406	4 ₄ 75	112

186	Polyelectrolyte Stabilized Nanowires from Fe3O4Nanoparticles via Magnetic Field Induced Self-Assembly. <i>Chemistry of Materials</i> , 2006 , 18, 591-593	9.6	111
185	Environment-Adopting Surfaces with Reversibly Switchable Morphology. <i>Macromolecular Rapid Communications</i> , 2001 , 22, 206-211	4.8	106
184	Single Molecules and Associates of Heteroarm Star Copolymer Visualized by Atomic Force Microscopy. <i>Macromolecules</i> , 2003 , 36, 8704-8711	5.5	101
183	Gradient Mixed Brushes: G rafting To Approach. <i>Macromolecules</i> , 2004 , 37, 7421-7423	5.5	100
182	Tunable plasmonic nanostructures from noble metal nanoparticles and stimuli-responsive polymers. <i>Soft Matter</i> , 2012 , 8, 5980	3.6	98
181	Superomniphobic magnetic microtextures with remote wetting control. <i>Journal of the American Chemical Society</i> , 2012 , 134, 12916-9	16.4	97
180	Gradient Polymer Layers by Grafting To Approach. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 360-365	4.8	96
179	Molecular-engineered stimuli-responsive thin polymer film: a platform for the development of integrated multifunctional intelligent materials. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6932		95
178	Biochemically controlled bioelectrocatalytic interface. <i>Journal of the American Chemical Society</i> , 2008 , 130, 10888-9	16.4	90
177	Responsive Polyelectrolyte Gel Membranes. <i>Advanced Materials</i> , 2006 , 18, 2458-2460	24	90
176	Reconformation and Metallization of Unimolecular Micelles in Controlled Environment. <i>Nano Letters</i> , 2003 , 3, 365-368	11.5	88
175	Superhydrophobic Surfaces Generated from Water-Borne Dispersions of Hierarchically Assembled Nanoparticles Coated with a Reversibly Switchable Shell. <i>Advanced Materials</i> , 2008 , 20, 200-205	24	87
174	Stimuli-Responsive Materials with Self-Healing Antifouling Surface via 3D Polymer Grafting. <i>Advanced Functional Materials</i> , 2013 , 23, 4593-4600	15.6	86
173	Switchable selectivity for gating ion transport with mixed polyelectrolyte brushes: approaching 'smart' drug delivery systems. <i>Nanotechnology</i> , 2009 , 20, 434006	3.4	84
172	Gold-nanoparticle-enhanced plasmonic effects in a responsive polymer gel. <i>Advanced Materials</i> , 2008 , 20, 2730-4	24	84
171	Mineralization of single flexible polyelectrolyte molecules. <i>Journal of the American Chemical Society</i> , 2002 , 124, 10192-7	16.4	84
170	Responsive colloidal systems: reversible aggregation and fabrication of superhydrophobic surfaces. Journal of Colloid and Interface Science, 2007, 310, 481-8	9.3	83
169	Grafting on Solid Surfaces: Carafting to Cand Carafting from [Methods 2008, 215-234		82

(2018-2005)

168	From smart polymer molecules to responsive nanostructured surfaces. <i>Langmuir</i> , 2005 , 21, 8591-3	4	79
167	pH-Responsive Thin Film Membranes from Poly(2-vinylpyridine): Water Vapor-Induced Formation of a Microporous Structure. <i>Macromolecules</i> , 2007 , 40, 2086-2091	5.5	78
166	Bidisperse Mixed Brushes: Synthesis and Study of Segregation in Selective Solvent. <i>Macromolecules</i> , 2003 , 36, 7268-7279	5.5	78
165	Interaction of lipid membrane with nanostructured surfaces. <i>Langmuir</i> , 2009 , 25, 6287-99	4	73
164	Bioelectrocatalytic system coupled with enzyme-based biocomputing ensembles performing boolean logic operations: approaching "smart" physiologically controlled biointerfaces. <i>ACS Applied Materials & Materials </i>	9.5	72
163	Reversible "closing" of an electrode interface functionalized with a polymer brush by an electrochemical signal. <i>Langmuir</i> , 2010 , 26, 4506-13	4	71
162	Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy. <i>Chemical Communications</i> , 2006 , 3343-5	5.8	71
161	An electrochemical gate based on a stimuli-responsive membrane associated with an electrode surface. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 12141-5	3.4	68
160	Three-Dimensional Analysis of Switching Mechanism of Mixed Polymer Brushes. <i>Macromolecules</i> , 2007 , 40, 8774-8783	5.5	68
159	Direct Measurement of Thermoelastic Properties of Glassy and Rubbery Polymer Brush Nanolayers Grown by G rafting-from Approach. <i>Langmuir</i> , 2003 , 19, 6126-6134	4	66
158	Synthetic Hydrophilic Materials with Tunable Strength and a Range of Hydrophobic Interactions. <i>Advanced Functional Materials</i> , 2010 , 20, 2240-2247	15.6	64
157	Cationic Telechelic Polyelectrolytes: Synthesis by Group Transfer Polymerization and Self-Organization in Aqueous Media. <i>Macromolecules</i> , 2006 , 39, 678-683	5.5	64
156	Mixed polymer brushes with locking switching. ACS Applied Materials & amp; Interfaces, 2012, 4, 483-9	9.5	63
155	Thermostable branched DNA nanostructures as modular primers for polymerase chain reaction. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 8699-702	16.4	63
154	Specific biochemical-to-optical signal transduction by responsive thin hydrogel films loaded with noble metal nanoparticles. <i>Advanced Materials</i> , 2010 , 22, 1412-6	24	63
153	Nonwettable thin films from hybrid polymer brushes can be hydrophilic. <i>Langmuir</i> , 2007 , 23, 13-9	4	63
152	Fluorescent Reactive CoreBhell Composite Nanoparticles with A High Surface Concentration of Epoxy Functionalities. <i>Chemistry of Materials</i> , 2008 , 20, 317-325	9.6	62
151	Magnetic field remotely controlled selective biocatalysis. <i>Nature Catalysis</i> , 2018 , 1, 73-81	36.5	62

150	Wound-healing with mechanically robust and biodegradable hydrogel fibers loaded with silver nanoparticles. <i>Advanced Healthcare Materials</i> , 2012 , 1, 621-30	10.1	61
149	An integrated multifunctional nanosystem from command nanoparticles and enzymes. <i>Small</i> , 2009 , 5, 817-20	11	60
148	Palladium Wire-Shaped Nanoparticles from Single Synthetic Polycation Molecules. <i>Nano Letters</i> , 2002 , 2, 881-885	11.5	60
147	Low Adhesive Surfaces that Adapt to Changing Environments. <i>Advanced Materials</i> , 2009 , 21, 1840-1844	24	59
146	Chemical contrasting in a single polymer molecule AFM experiment. <i>Journal of the American Chemical Society</i> , 2003 , 125, 11202-3	16.4	58
145	Magneto-Induced Self-Assembling of Conductive Nanowires for Biosensor Applications. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 7337-7344	3.8	55
144	Electrode interfaces switchable by physical and chemical signals for biosensing, biofuel, and biocomputing applications. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 3659-72	4.4	54
143	Biocompatible stimuli-responsive hydrogel porous membranes via phase separation of a polyvinyl alcohol and Na-alginate intermolecular complex. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19482		53
142	Modified Electrodes with Switchable Selectivity for Cationic and Anionic Redox Species. <i>Electroanalysis</i> , 2010 , 22, 35-40	3	53
141	In situ infrared ellipsometric study of stimuli-responsive mixed polyelectrolyte brushes. <i>Analytical Chemistry</i> , 2007 , 79, 7676-82	7.8	53
140	Multiresponsive Biopolyelectrolyte Membrane. <i>Advanced Materials</i> , 2008 , 20, 4588-4593	24	53
139	Enzyme-based logic systems interfaced with signal-responsive materials and electrodes. <i>Chemical Communications</i> , 2015 , 51, 3493-500	5.8	51
138	Polymer brushes as active nanolayers for tunable bacteria adhesion. <i>Materials Science and Engineering C</i> , 2009 , 29, 680-684	8.3	50
137	Highly efficient phase boundary biocatalysis with enzymogel nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 483-7	16.4	48
136	Majority and minority gates realized in enzyme-biocatalyzed systems integrated with logic networks and interfaced with bioelectronic systems. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 6775-84	13.4	48
135	Responsive Surfaces for Life Science Applications. <i>Annual Review of Materials Research</i> , 2012 , 42, 343-3	7 2 2.8	48
134	Chemical and structural changes in a pH-responsive mixed polyelectrolyte brush studied by infrared ellipsometry. <i>Langmuir</i> , 2009 , 25, 10987-91	4	48
133	Enzyme-based logic systems and their applications for novel multi-signal-responsive materials. Journal of Materials Science: Materials in Medicine, 2009, 20, 457-62	4.5	47

(2005-2008)

132	Diversity of Nanostructured Self-Assemblies from a pH-Responsive ABC Terpolymer in Aqueous Media. <i>Macromolecules</i> , 2008 , 41, 925-934	5.5	47	
131	AFM single molecule studies of adsorbed polyelectrolytes. <i>Current Opinion in Colloid and Interface Science</i> , 2005 , 10, 9-15	7.6	47	
130	Synthesis and Behavior of the Polymer Covering on a Solid Surface. 3. Morphology and Mechanism of Formation of Grafted Polystyrene Layers on the Glass Surface. <i>Macromolecules</i> , 1998 , 31, 3945-3952	5.5	47	
129	Radical Polymerization Initiated from a Solid Substrate. 3. Grafting from the Surface of an Ultrafine Powder. <i>Macromolecules</i> , 1999 , 32, 4539-4543	5.5	45	
128	Touch- and Brush-Spinning of Nanofibers. <i>Advanced Materials</i> , 2015 , 27, 6526-32	24	44	
127	Single nanoparticle plasmonic devices by the "grafting to" method. <i>Langmuir</i> , 2008 , 24, 8976-80	4	44	
126	Imaging and Microanalysis of Thin Ionomer Layers by Scanning Transmission Electron Microscopy. Journal of the Electrochemical Society, 2014 , 161, F1111-F1117	3.9	42	
125	Optical nanosensor platform operating in near-physiological pH range via polymer-brush-mediated plasmon coupling. <i>ACS Applied Materials & Description</i> (2011), 3, 143-6	9.5	42	
124	Dual magnetobiochemical logic control of electrochemical processes based on local interfacial pH changes. <i>ACS Applied Materials & amp; Interfaces</i> , 2009 , 1, 1166-8	9.5	42	
123	Stimuli-responsive command polymer surface for generation of protein gradients. <i>Biointerphases</i> , 2009 , 4, FA45-9	1.8	42	
122	Electrochemical nanotransistor from mixed-polymer brushes. Advanced Materials, 2010 , 22, 1863-6	24	40	
121	Stimuli-responsive mixed grafted polymer films with gradually changing properties: direct determination of chemical composition. <i>Langmuir</i> , 2005 , 21, 8711-6	4	40	
12 0	Adapting low-adhesive thin films from mixed polymer brushes. <i>Langmuir</i> , 2008 , 24, 13828-32	4	39	
119	Radical Polymerization Initiated from a Solid Substrate. 1. Theoretical Background. <i>Macromolecules</i> , 1999 , 32, 4525-4531	5.5	39	
118	Magnetic Field-Activated Sensing of mRNA in Living Cells. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12117-12120	16.4	38	
117	Single molecule experiments visualizing adsorbed polyelectrolyte molecules in the full range of mono- and divalent counterion concentrations. <i>Journal of the American Chemical Society</i> , 2010 , 132, 136	560- 2	38	
116	Metallic nickel nanorod arrays embedded into ordered block copolymer templates. <i>Thin Solid Films</i> , 2007 , 515, 6552-6556	2.2	38	
115	Multifunctional Stimuli Responsive ABC Terpolymers: From Three-Compartment Micelles to Three-Dimensional Network. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1371-1376	4.8	38	

114	High-performance flexible yarn for wearable piezoelectric nanogenerators. <i>Smart Materials and Structures</i> , 2018 , 27, 095018	3.4	37
113	Adsorption of polyelectrolyte versus surface charge: in situ single-molecule atomic force microscopy experiments on similarly, oppositely, and heterogeneously charged surfaces. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 8597-604	3.4	37
112	Conformation of single polyelectrolyte chains vs. salt concentration: Effects of sample history and solid substrate. <i>Polymer</i> , 2006 , 47, 2493-2498	3.9	37
111	Robust, Solvent-Free, Catalyst-Free Click Chemistry for the Generation of Highly Stable Densely Grafted Poly(ethylene glycol) Polymer Brushes by the Grafting To Method and Their Properties. <i>Macromolecules</i> , 2016 , 49, 7625-7631	5.5	37
110	In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 12430-9	9.5	36
109	Conformational transitions of flexible hydrophobic polyelectrolytes in solutions of monovalent and multivalent salts and their mixtures. <i>Langmuir</i> , 2012 , 28, 6037-44	4	36
108	Nanostructured Soft Matter with Magnetic Nanoparticles. <i>Advanced Functional Materials</i> , 2016 , 26, 37	61 <u>1</u> 37 83	2 35
107	Field-directed self-assembly with locking nanoparticles. <i>Nano Letters</i> , 2012 , 12, 3814-20	11.5	35
106	Toward fabric-based flexible microfluidic devices: pointed surface modification for pH sensitive liquid transport. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 4541-8	9.5	35
105	Radical Polymerization Initiated from a Solid Substrate. 2. Study of the Grafting Layer Growth on the Silica Surface by in situ Ellipsometry. <i>Macromolecules</i> , 1999 , 32, 4532-4538	5.5	34
104	Biomolecular release triggered by glucose inputbioelectronic coupling of sensing and actuating systems. <i>Chemical Communications</i> , 2013 , 49, 4755-7	5.8	33
103	Environmentally sound textile dyeing technology with nanofibrillated cellulose. <i>Green Chemistry</i> , 2017 , 19, 4031-4035	10	32
102	Fluorescent nanoparticles stabilized by poly(ethylene glycol) containing shell for pH-triggered tunable aggregation in aqueous environment. <i>Langmuir</i> , 2010 , 26, 10684-92	4	31
101	AFM imaging of adsorbed Nafion polymer on mica and graphite at molecular level. <i>Langmuir</i> , 2011 , 27, 10157-66	4	29
100	Magnetospinning of Nano- and Microfibers. <i>Advanced Materials</i> , 2015 , 27, 3560-5	24	26
99	Reconfigurable Anisotropic Coatings via Magnetic Field-Directed Assembly and Translocation of Locking Magnetic Chains. <i>Advanced Functional Materials</i> , 2014 , 24, 4738-4745	15.6	26
98	Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects. <i>Nanoscale</i> , 2012 , 4, 284-92	7.7	26
97	Magnetic field assisted assembly of highly ordered percolated nanostructures and their application for transparent conductive thin films. <i>Nanoscale</i> , 2015 , 7, 7155-61	7.7	25

96	Materials with Built-in Logic. Journal of Computational and Theoretical Nanoscience, 2011, 8, 356-364	0.3	25
95	Wet-Spun Stimuli-Responsive Composite Fibers with Tunable Electrical Conductivity. <i>Advanced Functional Materials</i> , 2013 , 23, 5903-5909	15.6	24
94	Nanoreactors based on DNAzyme-functionalized magnetic nanoparticles activated by magnetic field. <i>Nanoscale</i> , 2018 , 10, 1356-1365	7.7	22
93	Investigation of debonding processes in particle-filled polymer materials by acoustic emission: Part I Acoustic emission and debonding stress. <i>Journal of Materials Science</i> , 1997 , 32, 4397-4403	4.3	21
92	Low pressure plasma-based approaches to fluorocarbon polymer surface modification. <i>Journal of Applied Polymer Science</i> , 2007 , 103, 100-109	2.9	21
91	Touch-Spun Nanofibers for Nerve Regeneration. ACS Applied Materials & amp; Interfaces, 2020, 12, 2067.	- 2 ,0,7 5	21
90	Ultrathin responsive polyelectrolyte brushes studied by infrared synchrotron mapping ellipsometry. <i>Applied Physics Letters</i> , 2008 , 92, 103102	3.4	20
89	Switching and structuring of binary reactive polymer brush layers. <i>Macromolecular Symposia</i> , 2004 , 210, 229-235	0.8	20
88	Phase behavior and self-assembly of PSn(P2VP-b-PAA)n multiarmed multisegmented star terpolymers with ampholytic arms. <i>Polymer Chemistry</i> , 2011 , 2, 2037	4.9	19
87	Regular Patterned Surfaces from Core-Shell Particles. Preparation and Characterization72-81		19
86	AFM Imaging of Single Polycation Molecules Contrasted with Cyanide-Bridged Compounds. <i>Macromolecules</i> , 2005 , 38, 501-506	5.5	18
85	Colloidal Occlusion Template Method for Micromanufacturing of Omniphobic Surfaces. Advanced		17
	Functional Materials, 2013 , 23, 870-877	15.6	1/
84	Polypropylene surface peroxidation with heterofunctional polyperoxides. <i>Macromolecular Symposia</i> , 2004 , 210, 339-348	0.8	17
84	Polypropylene surface peroxidation with heterofunctional polyperoxides. <i>Macromolecular Symposia</i>		
	Polypropylene surface peroxidation with heterofunctional polyperoxides. <i>Macromolecular Symposia</i> , 2004 , 210, 339-348 Tunable ultrathin membranes with nonvolatile pore shape memory. <i>ACS Applied Materials & </i>	0.8	17
83	Polypropylene surface peroxidation with heterofunctional polyperoxides. <i>Macromolecular Symposia</i> , 2004 , 210, 339-348 Tunable ultrathin membranes with nonvolatile pore shape memory. <i>ACS Applied Materials & </i>	0.8	17
83	Polypropylene surface peroxidation with heterofunctional polyperoxides. <i>Macromolecular Symposia</i> , 2004, 210, 339-348 Tunable ultrathin membranes with nonvolatile pore shape memory. <i>ACS Applied Materials & ACS Applied Materials & ACS Catalysis</i> , 2015, 7, 10401-6 Thermal Stabilization of Enzymes with Molecular Brushes. <i>ACS Catalysis</i> , 2017, 7, 8675-8684 DNA Computing Systems Activated by Electrochemically-triggered DNA Release from a	0.89.513.1	17 16 16

78	Probing rough composite surfaces with atomic force microscopy: Nafion ionomer in fuel cell electrodes. <i>Polymer</i> , 2016 , 102, 396-403	3.9	15
77	Stimuli-responsive hydrogel hollow capsules by material efficient and robust cross-linking-precipitation synthesis revisited. <i>Langmuir</i> , 2011 , 27, 15305-11	4	15
76	Highly Porous 3D Fibrous Nanostructured Bioplolymer Films with Stimuli-Responsive Porosity via Phase Separation in Polymer Blend. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 12463-9	9.5	14
75	Stimuli-responsive properties of peptide-based copolymers studied via directional growth of self-assembled patterns on solid substrate. <i>Biomacromolecules</i> , 2009 , 10, 1955-61	6.9	14
74	Magneto-Controlled Biocatalytic Cascades with Logically Processed Input Signals - Substrate Channeling versus Free Diffusion. <i>ChemPhysChem</i> , 2018 , 19, 3035-3043	3.2	14
73	AFM Study of Polymer Brush Grafted to Deformable Surfaces: Quantitative Properties of the Brush and Substrate Mechanics. <i>Macromolecules</i> , 2017 , 50, 275-282	5.5	13
72	Stimuli-Responsive Biointerface Based on Polymer Brushes for Glucose Detection. <i>Electroanalysis</i> , 2014 , 26, 815-822	3	13
71	Effect of Local Charge Distribution on Graphite Surface on Nafion Polymer Adsorption as Visualized at the Molecular Level. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 16019-16026	3.8	13
70	Investigation of debonding processes in particle-filled polymer materials by acoustic emission: Part II Acoustic emission amplitude and energy release by debonding. <i>Journal of Materials Science</i> , 1997 , 32, 4405-4410	4.3	13
69	Investigation of craze development using small-angle X-ray scattering of synchrotron radiation. <i>Journal of Macromolecular Science - Physics</i> , 1999 , 38, 869-883	1.4	13
68	Synthesis and behaviour of the polymer covering on a solid surface: 1. Attachment of the polymer initiator to the solid surface. <i>Polymer</i> , 1996 , 37, 177-181	3.9	13
67	Towards Nanomaterials for Cancer Theranostics: A System of DNA-Modified Magnetic Nanoparticles for Detection and Suppression of RNA Marker in Cancer Cells. <i>Magnetochemistry</i> , 2019 , 5, 24	3.1	12
66	Investigation of failure mechanisms in polymer composites by simultaneous measurement of ultra-small-angle scattering and acoustic emission during the deformation. I. Method. <i>Journal of Macromolecular Science - Physics</i> , 1999 , 38, 901-912	1.4	12
65	Photochemical structuring and fixing of structures in binary polymer brush layers via 2pi+2pi photodimerization. <i>Journal of Colloid and Interface Science</i> , 2005 , 282, 349-58	9.3	11
64	Structure and reactivity of peroxide monomers. <i>Journal of Polymer Science Part A</i> , 1996 , 34, 2507-2511	2.5	11
63	Nanocellulose-Based Sustainable Dyeing of Cotton Textiles with Minimized Water Pollution. <i>ACS Omega</i> , 2020 , 5, 9196-9203	3.9	11
62	Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles. <i>Applied Biochemistry and Biotechnology</i> , 2015 , 175, 2872-82	3.2	10
61	Electrochemically Stimulated DNA Release from a Polymer-Brush Modified Electrode. <i>Electroanalysis</i> , 2015 , 27, 2171-2179	3	10

60	Effect of polyacrylate binding layers on adhesion of UV-cured epoxyacrylate protective coatings on optical fibers. <i>Journal of Applied Polymer Science</i> , 1998 , 67, 1913-1923	2.9	10
59	Oscillation Phenomenon at Polymer Adsorption. <i>Langmuir</i> , 2000 , 16, 7876-7878	4	10
58	Fabrication of core-sheath nanoyarn via touchspinning and its application in wearable piezoelectric nanogenerator. <i>Journal of the Textile Institute</i> , 2020 , 111, 906-915	1.5	10
57	Enhanced neuronal differentiation of neural stem cells with mechanically enhanced touch-spun nanofibrous scaffolds. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2020 , 24, 102152	6	10
56	Grafting through Method for Implanting of Lysozyme Enzyme in Molecular Brush for Improved Biocatalytic Activity and Thermal Stability. <i>Macromolecules</i> , 2018 , 51, 5039-5047	5.5	10
55	En Route to Practicality of the Polymer Grafting Technology: One-Step Interfacial Modification with Amphiphilic Molecular Brushes. <i>ACS Applied Materials & Amphiphilic Molecular Brushes</i> . <i>ACS Applied Materials & Amphiphilic Molecular Brushes</i> .	9.5	9
54	Modeling the Effect of pH and Temperature for Cellulases Immobilized on Enzymogel Nanoparticles. <i>Applied Biochemistry and Biotechnology</i> , 2015 , 176, 1114-30	3.2	9
53	Polyolefin surface activation by grafting of functional polyperoxide. <i>Reactive and Functional Polymers</i> , 2011 , 71, 210-218	4.6	9
52	Structure of salted and discharged globules of hydrophobic polyelectrolytes adsorbed from aqueous solutions. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2010 , 48, 1623-1627	2.6	9
51	Adsorption of Polymers at the Surface Concentrations in the Diluted to Semidiluted Regimes. <i>Macromolecules</i> , 1997 , 30, 6929-6936	5.5	9
50	AFM-Based Study of the Interaction Forces between Ceria, Silicon Dioxide and Polyurethane Pad during Non-Prestonian Polishing of Silicon Dioxide Films. <i>ECS Journal of Solid State Science and Technology</i> , 2015 , 4, P5016-P5020	2	8
49	Adhesion and Stability of Nanocellulose Coatings on Flat Polymer Films and Textiles. <i>Molecules</i> , 2020 , 25,	4.8	8
48	Robust synthesis of nanogel particles by an aggregation-crosslinking method. Soft Matter, 2010, 6, 439	6 3.6	7
47	Investigation of failure mechanisms in polymer composites by simultaneous measurement of ultra-small-angle scattering and acoustic emission during the deformation. II. Evaluation of the interface strength. <i>Journal of Macromolecular Science - Physics</i> , 1999 , 38, 913-929	1.4	7
46	Oscillatory phenomena at polyvinylpyridine/silica interfaces. <i>Macromolecular Rapid Communications</i> , 1999 , 20, 85-87	4.8	7
45	Designing Highly Thermostable Lysozyme-Copolymer Conjugates: Focus on Effect of Polymer Concentration. <i>Biomacromolecules</i> , 2018 , 19, 1175-1188	6.9	6
44	Plasmonic nanobiosensor with chain reaction amplification mechanism. <i>Chemistry - A European Journal</i> , 2014 , 20, 1226-30	4.8	6
43	Highly Efficient Phase Boundary Biocatalysis with Enzymogel Nanoparticles. <i>Angewandte Chemie</i> , 2014 , 126, 493-497	3.6	6

42	Non-equilibrium adsorption at solid/liquid interfaces from polyelectrolyte solutions. <i>Colloid and Polymer Science</i> , 2004 , 282, 1000-1007	2.4	6
41	Nanostructures and Functionalities in Polymer Thin Films. <i>Macromolecular Symposia</i> , 2004 , 214, 73-84	0.8	6
40	Evaluation of the polymer-nonpolymer adhesion in particle-filled polymers with the acoustic emission method. <i>Journal of Adhesion Science and Technology</i> , 2000 , 14, 999-1019	2	6
39	Preprogrammed Dynamic Microstructured Polymer Interfaces. <i>Advanced Functional Materials</i> , 2020 , 30, 1903478	15.6	6
38	Application of Acoustic Emission Measurements to Investigate Adhesion in Filled Polymeric Composites 2001 , 75, 257-266		5
37	Adsorption of Protonated Poly(vinylpyridine) on Silica. Correlation between Interfacial Conformation and Colloid Stability. <i>Macromolecules</i> , 1998 , 31, 6387-6389	5.5	5
36	All-Nanoparticle Monolayer Broadband Antireflective and Self-Cleaning Transparent Glass Coatings. <i>ACS Applied Materials & District Sensor</i> , 11, 13, 6767-6777	9.5	5
35	Gravity Drawing of Micro- and Nanofibers for Additive Manufacturing of Well-Organized 3D-Nanostructured Scaffolds. <i>Small</i> , 2020 , 16, e1907422	11	4
34	Reactive Magnetospinning of Nano- and Microfibers. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13613-6	16.4	4
33	Mixed Polymer Brushes: Switching of Surface Behavior and Chemical Patterning at the Nanoscale 2005 , 403-425		4
32	Gradient Stimuli-Responsive Polymer Grafted Layers. ACS Symposium Series, 2005, 68-83	0.4	4
31	A Kinetic Method for Investigating the Structure of Adsorbed Polymer Layers. <i>Adsorption Science and Technology</i> , 1996 , 14, 251-257	3.6	4
30	Biofouling-Resistant Porous Membranes with a Precisely Adjustable Pore Diameter via 3D Polymer Grafting. <i>ACS Applied Materials & Acs Applied & Acs Applie</i>	9.5	3
29	The toxicity of engineered nanoparticles on seed plants chronically exposed to low-level environmental radiation. <i>Russian Journal of Ecology</i> , 2015 , 46, 236-245	0.7	3
28	Modification of the Surface of a Substrate by Adsorbed Polymer Interlayers for the Control of Adhesion. <i>Adsorption Science and Technology</i> , 1996 , 14, 259-266	3.6	3
27	Environment-friendly nanocellulose-indigo dyeing of textiles. <i>Green Chemistry</i> ,	10	3
26	Adaptive Hybrid Molecular Brushes Composed of Chitosan, Polylactide, and Poly(-vinyl pyrrolidone) for Support and Guiding Human Dermal Fibroblasts <i>ACS Applied Bio Materials</i> , 2020 , 3, 4118-4127	4.1	2
25	Nanopatterning of Solvent between Apposing Planar Brushes under Pressure. <i>Macromolecules</i> , 2018 , 51, 6387-6394	5.5	2

(2015-2014)

24	High-Resolution Mapping of the PFSA Polymer Distribution in PEFC Electrode Layers. <i>ECS Transactions</i> , 2014 , 64, 819-827	1	2
23	Coatings via Self-Assembly of Smart Nanoparticles. ACS Symposium Series, 2009, 145-157	0.4	2
22	The strength of the tailored polymer/inclusion interface in polymer composites evaluated in situ by acoustic emission. <i>Polymer Bulletin</i> , 1998 , 41, 247-252	2.4	2
21	Enzymogel Nanoparticles Chemistry for Highly Efficient Phase Boundary Biocatalysis 2017 , 369-399		2
20	Magneto-Controlled Enzyme Activity with Locally Produced pH Changes. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 2523-2527	6.4	2
19	Carboxymethyl Cellulose Enhanced Production of Cellulose Nanofibrils. Fibers, 2021, 9, 57	3.7	2
18	Stimuli-Responsive Fine Particles 2012 , 283-308		1
17	Smart Responsive Coatings from Mixed Polymer Brushes. ACS Symposium Series, 2007, 79-93	0.4	1
16	Conformation of Polymer Molecule via Atomic Force Microscopy. ACS Symposium Series, 2005, 207-223	0.4	1
15	Highly flexible and conductive stainless-steel thread based piezoelectric coaxial yarn nanogenerators via solution coating and touch-spun nanofibers coating methods. <i>Smart Materials and Structures</i> , 2022 , 31, 035028	3.4	1
14	Nanostructured Polymer Brushes With Reversibly Changing Properties. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 727, 1		1
13	Long-Term Autonomic Thermoregulating Fabrics Based on Microencapsulated Phase Change Materials <i>ACS Applied Energy Materials</i> , 2021 , 4, 12789-12797	6.1	1
12	Biomimetic Cellulosomes Assembled on Molecular Brush Scaffolds: Random Complexes vs Enzyme Mixtures. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 1840-1853	4.3	1
11	Polyethylene Glycol Crowder's Effect on Enzyme Aggregation, Thermal Stability, and Residual Catalytic Activity. <i>Langmuir</i> , 2021 , 37, 8474-8485	4	1
10	Infrared polarimetry: Anisotropy of polymer nanofibers. <i>Micro and Nano Engineering</i> , 2022 , 14, 100116	3.4	1
9	Melt coated flexible stainless-steel thread based co-axial triboelectric yarn nanogenerators. Materials Technology,1-15	2.1	О
8	Titelbild: Highly Efficient Phase Boundary Biocatalysis with Enzymogel Nanoparticles (Angew. Chem. 2/2014). <i>Angewandte Chemie</i> , 2014 , 126, 339-339	3.6	
7	Reactive Magnetospinning of Nano- and Microfibers. <i>Angewandte Chemie</i> , 2015 , 127, 13817-13820	3.6	

- 6 Polymer Gradients: Responsive Grafted Layers **2012**, 303-328
- 5 Local Chain Organization of Switchable Binary Polymer Brushes in Selective Solvents **2005**, 427-440
- Metallic Nanoparticles from Single Polyelectrolyte Molecules. *Materials Research Society Symposia*4 *Proceedings*, **2002**, 726, 1
- Refining of Particulates at Stimuli-Responsive Interfaces: Label-Free Sorting and Isolation.

 Angewandte Chemie, e202110990

3.6

- Switching of Surface Properties with Polymer Brushes. *Materials Research Society Symposia Proceedings*, **2000**, 629, 1
- Hairy Tube Polymer Templates From Diblock Copolymer Thin Films. *Materials Research Society Symposia Proceedings*, **2002**, 728, 151