Nandana Bhardwaj

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6102937/nandana-bhardwaj-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28
papers

4,872
citations

4,872
h-index

29
g-index

5,565
ext. papers

8
avg, IF

L-index

#	Paper	IF	Citations
28	Overcoming the Dependence on Animal Models for Osteoarthritis Therapeutics - The Promises and Prospects of In Vitro Models. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100961	10.1	6
27	State-of-the-art strategies and future interventions in bone and cartilage repair for personalized regenerative therapy 2021 , 203-248		0
26	3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering <i>Journal of Biomedical Materials Research - Part A</i> , 2021 ,	5.4	2
25	Silk Fibroin Scaffold-Based 3D Co-Culture Model for Modulation of Chondrogenesis without Hypertrophy via Reciprocal Cross-talk and Paracrine Signaling. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 5240-5254	5.5	8
24	Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances. <i>Biomaterials</i> , 2019 , 216, 119267	15.6	172
23	3D functional scaffolds for skin tissue engineering 2018 , 345-365		29
22	Potential of silk sericin based nanofibrous mats for wound dressing applications. <i>Materials Science and Engineering C</i> , 2018 , 90, 420-432	8.3	70
21	Silk fibroin as a platform for dual sensing of vitamin B using photoluminescence and electrical techniques. <i>Biosensors and Bioelectronics</i> , 2018 , 112, 18-22	11.8	17
20	Injectable hydrogels: a new paradigm for osteochondral tissue engineering. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 5499-5529	7.3	51
19	Tissue Engineered Skin and Wound Healing: Current Strategies and Future Directions. <i>Current Pharmaceutical Design</i> , 2017 , 23, 3455-3482	3.3	56
18	Silk fiber reinforcement modulates in vitro chondrogenesis in 3D composite scaffolds. <i>Biomedical Materials (Bristol)</i> , 2017 , 12, 045012	3.5	23
17	Silk fibroinBarbon nanoparticle composite scaffolds: a cost effective supramolecular Burn off chemiresistor for nitroaromatic explosive vapours. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 8920-8929	7.1	15
16	Potential of Agarose/Silk Fibroin Blended Hydrogel for in Vitro Cartilage Tissue Engineering. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 21236-49	9.5	133
15	Reloadable Silk-Hydrogel Hybrid Scaffolds for Sustained and Targeted Delivery of Molecules. <i>Molecular Pharmaceutics</i> , 2016 , 13, 4066-4081	5.6	19
14	Biomimetic, Osteoconductive Non-mulberry Silk Fiber Reinforced Tricomposite Scaffolds for Bone Tissue Engineering. <i>ACS Applied Materials & Discrete Scales</i> , 2016, 8, 30797-30810	9.5	96
13	Cross-linked silk sericingelatin 2D and 3D matrices for prospective tissue engineering applications. <i>RSC Advances</i> , 2016 , 6, 105125-105136	3.7	30
12	Mimicking Form and Function of Native Small Diameter Vascular Conduits Using Mulberry and Non-mulberry Patterned Silk Films. <i>ACS Applied Materials & Diamopy Interfaces</i> , 2016 , 8, 15874-88	9.5	57

LIST OF PUBLICATIONS

11	Native honeybee silk membrane: a potential matrix for tissue engineering and regenerative medicine. <i>RSC Advances</i> , 2016 , 6, 54394-54403	3.7	7
10	Potential of silk fibroin/chondrocyte constructs of muga silkworm Antheraea assamensis for cartilage tissue engineering. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 3670-3684	7.3	47
9	Milled non-mulberry silk fibroin microparticles as biomaterial for biomedical applications. <i>International Journal of Biological Macromolecules</i> , 2015 , 81, 31-40	7.9	30
8	Silk fibroin-keratin based 3D scaffolds as a dermal substitute for skin tissue engineering. <i>Integrative Biology (United Kingdom)</i> , 2015 , 7, 53-63	3.7	115
7	Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors. <i>Macromolecular Bioscience</i> , 2015 , 15, 153-82	5.5	64
6	Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. <i>Biomaterials</i> , 2012 , 33, 2848-57	15.6	138
5	Invited review nonmulberry silk biopolymers. <i>Biopolymers</i> , 2012 , 97, 455-67	2.2	137
4	Freeze-gelled silk fibroin protein scaffolds for potential applications in soft tissue engineering. <i>International Journal of Biological Macromolecules</i> , 2011 , 49, 260-7	7.9	47
3	Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. <i>Carbohydrate Polymers</i> , 2011 , 85, 325-333	10.3	195
2	Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. <i>Biomaterials</i> , 2011 , 32, 5773-81	15.6	162
1	Electrospinning: a fascinating fiber fabrication technique. <i>Biotechnology Advances</i> , 2010 , 28, 325-47	17.8	3136