
Nandana Bhardwaj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6102937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 2010, 28, 325-347.	6.0	3,936
2	Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances. Biomaterials, 2019, 216, 119267.	5.7	323
3	Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohydrate Polymers, 2011, 85, 325-333.	5.1	229
4	Potential of Agarose/Silk Fibroin Blended Hydrogel for in Vitro Cartilage Tissue Engineering. ACS Applied Materials & Interfaces, 2016, 8, 21236-21249.	4.0	193
5	Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for inÂvitro cartilage tissue engineering. Biomaterials, 2011, 32, 5773-5781.	5.7	184
6	Nonmulberry silk biopolymers. Biopolymers, 2012, 97, 455-467.	1.2	174
7	Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials, 2012, 33, 2848-2857.	5.7	162
8	Silk fibroin–keratin based 3D scaffolds as a dermal substitute for skin tissue engineering. Integrative Biology (United Kingdom), 2015, 7, 53-63.	0.6	139
9	Biomimetic, Osteoconductive Non-mulberry Silk Fiber Reinforced Tricomposite Scaffolds for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2016, 8, 30797-30810.	4.0	122
10	Potential of silk sericin based nanofibrous mats for wound dressing applications. Materials Science and Engineering C, 2018, 90, 420-432.	3.8	97
11	Tissue Engineered Skin and Wound Healing: Current Strategies and Future Directions. Current Pharmaceutical Design, 2017, 23, 3455-3482.	0.9	91
12	Tissue-Engineered Cartilage: The Crossroads of Biomaterials, Cells and Stimulating Factors. Macromolecular Bioscience, 2015, 15, 153-182.	2.1	81
13	Mimicking Form and Function of Native Small Diameter Vascular Conduits Using Mulberry and Non-mulberry Patterned Silk Films. ACS Applied Materials & Interfaces, 2016, 8, 15874-15888.	4.0	78
14	Injectable hydrogels: a new paradigm for osteochondral tissue engineering. Journal of Materials Chemistry B, 2018, 6, 5499-5529.	2.9	78
15	Potential of silk fibroin/chondrocyte constructs of muga silkworm Antheraea assamensis for cartilage tissue engineering. Journal of Materials Chemistry B, 2016, 4, 3670-3684.	2.9	58
16	Freeze-gelled silk fibroin protein scaffolds for potential applications in soft tissue engineering. International Journal of Biological Macromolecules, 2011, 49, 260-267.	3.6	49
17	Cross-linked silk sericin–gelatin 2D and 3D matrices for prospective tissue engineering applications. RSC Advances, 2016, 6, 105125-105136.	1.7	41
18	Milled non-mulberry silk fibroin microparticles as biomaterial for biomedical applications. International Journal of Biological Macromolecules, 2015, 81, 31-40.	3.6	39

#	Article	IF	CITATIONS
19	<scp>3D</scp> bioprinting of <scp>photoâ€crosslinkable</scp> silk methacrylate (<scp>SilMA</scp>)â€polyethylene glycol diacrylate (<scp>PEGDA</scp>) bioink for cartilage tissue engineering. Journal of Biomedical Materials Research - Part A, 2022, 110, 884-898.	2.1	39
20	3D functional scaffolds for skin tissue engineering. , 2018, , 345-365.		36
21	Overcoming the Dependence on Animal Models for Osteoarthritis Therapeutics $\hat{a} \in$ "The Promises and Prospects of In Vitro Models. Advanced Healthcare Materials, 2021, 10, e2100961.	3.9	27
22	Silk fiber reinforcement modulates <i>in vitro</i> chondrogenesis in 3D composite scaffolds. Biomedical Materials (Bristol), 2017, 12, 045012.	1.7	25
23	Reloadable Silk-Hydrogel Hybrid Scaffolds for Sustained and Targeted Delivery of Molecules. Molecular Pharmaceutics, 2016, 13, 4066-4081.	2.3	24
24	Silk fibroin as a platform for dual sensing of vitamin B12 using photoluminescence and electrical techniques. Biosensors and Bioelectronics, 2018, 112, 18-22.	5.3	24
25	Silk fibroin–carbon nanoparticle composite scaffolds: a cost effective supramolecular â€~turn off' chemiresistor for nitroaromatic explosive vapours. Journal of Materials Chemistry C, 2016, 4, 8920-8929.	2.7	18
26	Silk Fibroin Scaffold-Based 3D Co-Culture Model for Modulation of Chondrogenesis without Hypertrophy via Reciprocal Cross-talk and Paracrine Signaling. ACS Biomaterials Science and Engineering, 2019, 5, 5240-5254.	2.6	12
27	Native honeybee silk membrane: a potential matrix for tissue engineering and regenerative medicine. RSC Advances, 2016, 6, 54394-54403.	1.7	9
28	State-of-the-art strategies and future interventions in bone and cartilage repair for personalized regenerative therapy. , 2021, , 203-248.		1