
Toshiyasu Taniguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6102458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	REV1-POL ζ Inhibition and Cancer Therapy. Molecular Cell, 2019, 75, 419-420.	4.5	3
2	CTDP1 regulates breast cancer survival and DNA repair through BRCT-specific interactions with FANCI. Cell Death Discovery, 2019, 5, 105.	2.0	14
3	NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection. Cell Cycle, 2017, 16, 335-347.	1.3	19
4	Recent insights into the molecular basis of Fanconi anemia: genes, modifiers, and drivers. International Journal of Hematology, 2017, 106, 335-344.	0.7	48
5	Ubiquitination-Linked Phosphorylation of the FANCI S/TQ Cluster Contributes to Activation of the Fanconi Anemia I/D2 Complex. Cell Reports, 2017, 19, 2432-2440.	2.9	33
6	DGCR8 Mediates Repair of UV-Induced DNA Damage Independently of RNA Processing. Cell Reports, 2017, 19, 162-174.	2.9	32
7	Abstract IA06: The Fanconi anemia-BRCA pathway and cancer. , 2017, , .		0
8	Synthetic lethality: the road to novel therapies for breast cancer. Endocrine-Related Cancer, 2016, 23, T39-T55.	1.6	17
9	Ataxia-Pancytopenia Syndrome Is Caused by Missense Mutations in SAMD9L. American Journal of Human Genetics, 2016, 98, 1146-1158.	2.6	136
10	BRCA1185delAG tumors may acquire therapy resistance through expression of RING-less BRCA1. Journal of Clinical Investigation, 2016, 126, 2903-2918.	3.9	105
11	FANCI Regulates Recruitment of the FA Core Complex at Sites of DNA Damage Independently of FANCD2. PLoS Genetics, 2015, 11, e1005563.	1.5	67
12	Resistance to PARP Inhibitors Mediated by Secondary BRCA1/2 Mutations. Cancer Drug Discovery and Development, 2015, , 431-452.	0.2	3
13	p53 Is Positively Regulated by miR-542-3p. Cancer Research, 2014, 74, 3218-3227.	0.4	50
14	MicroRNAs and DNA damage response. Cell Cycle, 2013, 12, 32-42.	1.3	92
15	53BP1 expression in sporadic and inherited ovarian carcinoma: Relationship to genetic status and clinical outcomes. Gynecologic Oncology, 2013, 128, 493-499.	0.6	28
16	Systematic Screen Identifies miRNAs That Target RAD51 and RAD51D to Enhance Chemosensitivity. Molecular Cancer Research, 2013, 11, 1564-1573.	1.5	86
17	Abstract IA13: The Fanconi anemia-BRCA pathway and chemosensitivity of cancer cells. , 2013, , .		0
18	Molecular Scores to Predict Ovarian Cancer Outcomes: A Worthy Goal, but Not Ready for Prime Time. Journal of the National Cancer Institute, 2012, 104, 642-645.	3.0	23

Тозніуаѕи Талібисні

#	Article	IF	CITATIONS
19	Non-specific chemical inhibition of the Fanconi anemia pathway sensitizes cancer cells to cisplatin. Molecular Cancer, 2012, 11, 26.	7.9	58
20	MiR-96 Downregulates REV1 and RAD51 to Promote Cellular Sensitivity to Cisplatin and PARP Inhibition. Cancer Research, 2012, 72, 4037-4046.	0.4	110
21	FANC-BLM-Opathies: Recent Progress in the Understanding of Molecular Pathogenesis of Fanconi Anemia and Its Connection with Bloom Syndrome. , 2012, , 189-230.		Ο
22	Secondary mutations of <i>BRCA1/2</i> and drug resistance. Cancer Science, 2011, 102, 663-669.	1.7	113
23	Secondary Somatic Mutations Restoring <i>BRCA1/2</i> Predict Chemotherapy Resistance in Hereditary Ovarian Carcinomas. Journal of Clinical Oncology, 2011, 29, 3008-3015.	0.8	513
24	MicroRNA-138 Modulates DNA Damage Response by Repressing Histone H2AX Expression. Molecular Cancer Research, 2011, 9, 1100-1111.	1.5	146
25	Gene Expression Profile of <i>BRCA</i> ness That Correlates With Responsiveness to Chemotherapy and With Outcome in Patients With Epithelial Ovarian Cancer. Journal of Clinical Oncology, 2010, 28, 3555-3561.	0.8	465
26	The role of FAN1 nuclease in the Fanconi anemia pathway. Cell Cycle, 2010, 9, 4266-4265.	1.3	6
27	Abstract 1951: MicroRNA-mediated regulation of the Fanconi anemia-BRCA pathway. , 2010, , .		Ο
28	Abstract 1947: Identification of microRNAs that regulate DNA damage response. , 2010, , .		0
29	Functional Restoration of BRCA2 Protein by Secondary <i>BRCA2</i> Mutations in <i>BRCA2</i> Mutated Ovarian Carcinoma. Cancer Research, 2009, 69, 6381-6386.	0.4	280
30	Methylation and protein expression of DNA repair genes: association with chemotherapy exposure and survival in sporadic ovarian and peritoneal carcinomas. Molecular Cancer, 2009, 8, 48.	7.9	89
31	The Fanconi anemia-BRCA Pathway and Cancer. , 2009, , 367-414.		Ο
32	Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature, 2008, 451, 1116-1120.	13.7	934
33	Secondary <i>BRCA1</i> Mutations in <i>BRCA1</i> Mutated Ovarian Carcinomas with Platinum Resistance. Cancer Research, 2008, 68, 2581-2586.	0.4	435
34	Proteasome Function Is Required for DNA Damage Response and Fanconi Anemia Pathway Activation. Cancer Research, 2007, 67, 7395-7405.	0.4	198
35	The Fanconi anemia pathway and ubiquitin. BMC Biochemistry, 2007, 8, S10.	4.4	59
36	The Fanconi anemia (FA) pathway confers glioma resistance to DNA alkylating agents. Journal of Molecular Medicine, 2007, 85, 497-509.	1.7	74

Тозніуаѕи Талібисні

#	Article	IF	CITATIONS
37	Cancer Survivorship—Genetic Susceptibility and Second Primary Cancers: Research Strategies and Recommendations. Journal of the National Cancer Institute, 2006, 98, 15-25.	3.0	295
38	Natural gene therapy in monozygotic twins with Fanconi anemia. Blood, 2006, 107, 3084-3090.	0.6	76
39	Molecular pathogenesis of Fanconi anemia: recent progress. Blood, 2006, 107, 4223-4233.	0.6	338
40	Disruption of the fanconi anemia pathway in human cancer in the general population. Cancer Biology and Therapy, 2006, 5, 1637-1639.	1.5	6
41	Chemosensitization to cisplatin by inhibitors of the Fanconi anemia/BRCA pathway. Molecular Cancer Therapeutics, 2006, 5, 952-961.	1.9	190
42	Phosphorylation of FANCD2 on Two Novel Sites Is Required for Mitomycin C Resistance. Molecular and Cellular Biology, 2006, 26, 7005-7015.	1.1	109
43	Regulated interaction of the Fanconi anemia protein, FANCD2, with chromatin. Blood, 2005, 105, 1003-1009.	0.6	118
44	The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Human Molecular Genetics, 2005, 14, 693-701.	1.4	254
45	Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1110-1115.	3.3	348
46	Fancd2 functions in a double strand break repair pathway that is distinct from non-homologous end joining. Human Molecular Genetics, 2005, 14, 3027-3033.	1.4	54
47	ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes and Development, 2004, 18, 1958-1963.	2.7	366
48	Regulation of the Fanconi anemia pathway by monoubiquitination. Seminars in Cancer Biology, 2003, 13, 77-82.	4.3	66
49	Bi-allelic silencing of the Fanconi anaemia gene FANCF in acute myeloid leukaemia. British Journal of Haematology, 2003, 123, 469-471.	1.2	65
50	Disruption of the Fanconi anemia–BRCA pathway in cisplatin-sensitive ovarian tumors. Nature Medicine, 2003, 9, 568-574.	15.2	508
51	Biallelic Inactivation of BRCA2 in Fanconi Anemia. Science, 2002, 297, 606-609.	6.0	1,072
52	Heterogeneous activation of the Fanconi anemia pathway by patient-derived FANCA mutants. Human Molecular Genetics, 2002, 11, 3125-3134.	1.4	66
53	S-phase–specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood, 2002, 100, 2414-2420.	0.6	426
54	The Fanconi anemia protein, FANCE, promotes the nuclear accumulation of FANCC. Blood, 2002, 100, 2457-2462.	0.6	77

Тозніуаѕи Талідисні

#	Article	IF	CITATIONS
55	Convergence of the Fanconi Anemia and Ataxia Telangiectasia Signaling Pathways. Cell, 2002, 109, 459-472.	13.5	421
56	Molecular Pathogenesis of Fanconi Anemia. International Journal of Hematology, 2002, 75, 123-128.	0.7	36
57	Interaction of FANCD2 and NBS1 in the DNA damage response. Nature Cell Biology, 2002, 4, 913-920.	4.6	261
58	Positional Cloning of a Novel Fanconi Anemia Gene, FANCD2. Molecular Cell, 2001, 7, 241-248.	4.5	370
59	Interaction of the Fanconi Anemia Proteins and BRCA1 in a Common Pathway. Molecular Cell, 2001, 7, 249-262.	4.5	1,125
60	Function of the Fanconi anemia pathway in Fanconi anemia complementation group F and D1 cells. Experimental Hematology, 2001, 29, 1448-1455.	0.2	37
61	Expression of p21Cip1/Waf1/Sdi1 and p27Kip1Cyclin-Dependent Kinase Inhibitors During Human Hematopoiesis. Blood, 1999, 93, 4167-4178.	0.6	96
62	Hairy cell leukemia with translocation (11;20)(q13;q11) and overexpression of cyclin D1. Leukemia Research, 1999, 23, 763-765.	0.4	13
63	A new multiple myeloma cell line, MEF-1, possesses cyclin d1 overexpression and the p53 mutation. , 1999, 85, 1750-1757.		8
64	Expression of p21Cip1/Waf1/Sdi1 and p27Kip1Cyclin-Dependent Kinase Inhibitors During Human Hematopoiesis. Blood, 1999, 93, 4167-4178.	0.6	7
65	Cyclin D1 Overexpression Detected by a Simple Competitive Reverse Transcription-polymerase Chain Reaction Assay for Lymphoid Malignancies. Japanese Journal of Cancer Research, 1998, 89, 159-166.	1.7	16
66	Growth arrest associated with 12-o-tetradecanoylphorbol-13-acetate-induced hematopoietic differentiation with a defective retinoblastoma tumor suppressor-mediated pathway. Leukemia Research, 1998, 22, 413-420.	0.4	9
67	Detection of Cyclin D1 (bcl-1, PRAD1) Overexpression by a Simple Competitive Reverse Transcription-Polymerase Chain Reaction Assay in t(11; 14)(q13; q32)-Bearing B-Cell Malignancies and/or Mantle Cell Lymphoma. Blood, 1997, 89, 965-974.	0.6	92
68	Clinical Significance of Serial Measurement of the Serum Levels of Soluble Interleukin-2 Receptor and Soluble CD8 in Malignant Lymphoma. Leukemia and Lymphoma, 1995, 16, 355-362.	0.6	24
69	The Fanconi Anemia Pathway and Ubiquitin. Targeted Protein Database, 0, , .	0.0	0